6,577 research outputs found

    Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.

    Get PDF
    BackgroundSingle-cell transcriptomics allows researchers to investigate complex communities of heterogeneous cells. It can be applied to stem cells and their descendants in order to chart the progression from multipotent progenitors to fully differentiated cells. While a variety of statistical and computational methods have been proposed for inferring cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult to solve.ResultsWe introduce Slingshot, a novel method for inferring cell lineages and pseudotimes from single-cell gene expression data. In previously published datasets, Slingshot correctly identifies the biological signal for one to three branching trajectories. Additionally, our simulation study shows that Slingshot infers more accurate pseudotimes than other leading methods.ConclusionsSlingshot is a uniquely robust and flexible tool which combines the highly stable techniques necessary for noisy single-cell data with the ability to identify multiple trajectories. Accurate lineage inference is a critical step in the identification of dynamic temporal gene expression

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data.

    Get PDF
    By profiling the transcriptomes of individual cells, single-cell RNA sequencing provides unparalleled resolution to study cellular heterogeneity. However, this comes at the cost of high technical noise, including cell-specific biases in capture efficiency and library generation. One strategy for removing these biases is to add a constant amount of spike-in RNA to each cell and to scale the observed expression values so that the coverage of spike-in transcripts is constant across cells. This approach has previously been criticized as its accuracy depends on the precise addition of spike-in RNA to each sample. Here, we perform mixture experiments using two different sets of spike-in RNA to quantify the variance in the amount of spike-in RNA added to each well in a plate-based protocol. We also obtain an upper bound on the variance due to differences in behavior between the two spike-in sets. We demonstrate that both factors are small contributors to the total technical variance and have only minor effects on downstream analyses, such as detection of highly variable genes and clustering. Our results suggest that scaling normalization using spike-in transcripts is reliable enough for routine use in single-cell RNA sequencing data analyses.This work was supported by Cancer Research UK (core funding to JCM, award no. A17197), the University of Cambridge and Hutchison Whampoa Limited. JCM was also supported by core funding from EMBL. LHV was supported by an EMBL Interdisciplinary Postdoctoral fellowship. Work in the G ottgens group was supported by Cancer Research UK, Bloodwise, the National Institute of Diabetes and Digestive and Kidney Diseases, the Leukemia and Lymphoma Society and core infrastructure grants from the Wellcome Trust and the Medical Research Council to the Cambridge Stem Cell Institute

    Methods for Joint Normalization and Comparison of Hi-C data

    Get PDF
    The development of chromatin conformation capture technology has opened new avenues of study into the 3D structure and function of the genome. Chromatin structure is known to influence gene regulation, and differences in structure are now emerging as a mechanism of regulation between, e.g., cell differentiation and disease vs. normal states. Hi-C sequencing technology now provides a way to study the 3D interactions of the chromatin over the whole genome. However, like all sequencing technologies, Hi-C suffers from several forms of bias stemming from both the technology and the DNA sequence itself. Several normalization methods have been developed for normalizing individual Hi-C datasets, but little work has been done on developing joint normalization methods for comparing two or more Hi-C datasets. To make full use of Hi-C data, joint normalization and statistical comparison techniques are needed to carry out experiments to identify regions where chromatin structure differs between conditions. We develop methods for the joint normalization and comparison of two Hi-C datasets, which we then extended to more complex experimental designs. Our normalization method is novel in that it makes use of the distance-dependent nature of chromatin interactions. Our modification of the Minus vs. Average (MA) plot to the Minus vs. Distance (MD) plot allows for a nonparametric data-driven normalization technique using loess smoothing. Additionally, we present a simple statistical method using Z-scores for detecting differentially interacting regions between two datasets. Our initial method was published as the Bioconductor R package HiCcompare [http://bioconductor.org/packages/HiCcompare/](http://bioconductor.org/packages/HiCcompare/). We then further extended our normalization and comparison method for use in complex Hi-C experiments with more than two datasets and optional covariates. We extended the normalization method to jointly normalize any number of Hi-C datasets by using a cyclic loess procedure on the MD plot. The cyclic loess normalization technique can remove between dataset biases efficiently and effectively even when several datasets are analyzed at one time. Our comparison method implements a generalized linear model-based approach for comparing complex Hi-C experiments, which may have more than two groups and additional covariates. The extended methods are also available as a Bioconductor R package [http://bioconductor.org/packages/multiHiCcompare/](http://bioconductor.org/packages/multiHiCcompare/). Finally, we demonstrate the use of HiCcompare and multiHiCcompare in several test cases on real data in addition to comparing them to other similar methods (https://doi.org/10.1002/cpbi.76)

    Capturing the ‘ome’ : the expanding molecular toolbox for RNA and DNA library construction

    Get PDF
    All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application

    Normalizing single-cell RNA sequencing data: challenges and opportunities

    Get PDF
    Single-cell transcriptomics is becoming an important component of the molecular biologist's toolkit. A critical step when analyzing data generated using this technology is normalization. However, normalization is typically performed using methods developed for bulk RNA sequencing or even microarray data, and the suitability of these methods for single-cell transcriptomics has not been assessed. We here discuss commonly used normalization approaches and illustrate how these can produce misleading results. Finally, we present alternative approaches and provide recommendations for single-cell RNA sequencing users
    corecore