3,649 research outputs found

    Practical Model-Based Diagnosis with Qualitative Possibilistic Uncertainty

    Full text link
    An approach to fault isolation that exploits vastly incomplete models is presented. It relies on separate descriptions of each component behavior, together with the links between them, which enables focusing of the reasoning to the relevant part of the system. As normal observations do not need explanation, the behavior of the components is limited to anomaly propagation. Diagnostic solutions are disorders (fault modes or abnormal signatures) that are consistent with the observations, as well as abductive explanations. An ordinal representation of uncertainty based on possibility theory provides a simple exception-tolerant description of the component behaviors. We can for instance distinguish between effects that are more or less certainly present (or absent) and effects that are more or less certainly present (or absent) when a given anomaly is present. A realistic example illustrates the benefits of this approach.Comment: Appears in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI1995

    Design for diagnostics and prognostics:a physical- functional approach

    Get PDF

    Self-tuning routine alarm analysis of vibration signals in steam turbine generators

    Get PDF
    This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques

    Power transformer dissolved gas analysis through Bayesian networks and hypothesis testing

    Get PDF
    Accurate diagnosis of power transformers is critical for the reliable and cost-effective operation of the power grid. Presently there are a range of methods and analytical models for transformer fault diagnosis based on dissolved gas analysis. However, these methods give conflicting results and they are not able to generate uncertainty information associated with the diagnostics outcome. In this situation it is not always clear which model is the most accurate. This paper presents a novel multiclass probabilistic diagnosis framework for dissolved gas analysis based on Bayesian networks and hypothesis testing. Bayesian network models embed expert knowledge, learn patterns from data and infer the uncertainty associated with the diagnostics outcome, and hypothesis testing aids in the data selection process. The effectiveness of the proposed framework is validated using the IEC TC 10 dataset and is shown to have a maximum diagnosis accuracy of 88.9%
    corecore