9 research outputs found

    Autonomous Vehicles and Automated Warehousing Systems for Industry 4.0

    Get PDF
    The rapid development of new technologies that enabled the emergence of important development segments such as the Internet of Things, Cyber Physical Systems, Information and Communication Technologies, Enterprise Architecture, and Enterprise Integration, have led to completely new manufacturing paradigms, which is called under the common name – Industry 4.0. The constantly growing use of autonomous vehicles and associated logistics solutions is among the most influential factors that foster this novel intelligent production framework. This paper describes the results of the latest research activities of the Laboratory for Robotics and Intelligent Control Systems in the Industry 4.0 domain where the focus lies on the shop floor digitalization and advanced control concepts that enable the transfer of technology and delivery of high-scalable logistic solutions

    Enhanced localization with adaptive normal distribution transform Monte Carlo localization for map based navigation robot

    Get PDF
    Map-based navigation is the common navigation method used among the mobile robotic application. The localization plays an important role in the navigation where it estimates the robot position in an environment. Monte Carlo Localization (MCL) is found as the widely used estimation algorithm due to it non-linear characteristic. There are classifications of MCL such as Adaptive MCL (AMCL), Normal Distribution Transform MCL (NDT-MCL) which can perform better than the MCL. However, AMCL is adaptive to particles but the position estimation accuracy is not optimized. NDT-MCL has good position estimation but it requires higher number of particles which results in higher computational effort. The objective of the research is to design and develop a localization algorithm which can achieve better performance in term of position estimation and computational effort. The new MCL algorithm which is named as Adaptive Normal Distribution Transform Monte Carlo Localization (ANDT-MCL) is then designed and developed. It integrates Kullback–Leibler divergence, Normal Distribution Transform and Systematic Resampling into the algorithm. Three experiments are conducted to evaluate the performance of proposed ANDT-MCL in simulated environment. These experiments include evaluating the performance of ANDT-MCL with different path shape, distance and velocity. In the end of the research work, the proposed ANDT-MCL is successfully developed. It is adaptive to the number of particles used, higher position estimation and lower computational effort than existing algorithms. The algorithm can produce better position estimation with less computational effort in any kind paths and is consistent in long journey as well as can outperform in high speed navigation

    DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots

    Full text link
    This paper presents DLL, a fast direct map-based localization technique using 3D LIDAR for its application to aerial robots. DLL implements a point cloud to map registration based on non-linear optimization of the distance of the points and the map, thus not requiring features, neither point correspondences. Given an initial pose, the method is able to track the pose of the robot by refining the predicted pose from odometry. Through benchmarks using real datasets and simulations, we show how the method performs much better than Monte-Carlo localization methods and achieves comparable precision to other optimization-based approaches but running one order of magnitude faster. The method is also robust under odometric errors. The approach has been implemented under the Robot Operating System (ROS), and it is publicly available.Comment: Accepted for IROS2021. Associated code can be downloaded from https://github.com/robotics-upo/dl

    Correspondenceless scan-to-map-scan matching of homoriented 2D scans for mobile robot localisation

    Full text link
    The objective of this study is improving the location estimate of a mobile robot capable of motion on a plane and mounted with a conventional 2D LIDAR sensor, given an initial guess for its location on a 2D map of its surroundings. Documented herein is the theoretical reasoning behind solving a matching problem between two homoriented 2D scans, one derived from the robot's physical sensor and one derived by simulating its operation within the map, in a manner that does not require the establishing of correspondences between their constituting rays. Two results are proved and subsequently shown through experiments. The first is that the true position of the sensor can be recovered with arbitrary precision when the physical sensor reports faultless measurements and there is no discrepancy between the environment the robot operates in and its perception of it by the robot. The second is that when either is affected by disturbance, the location estimate is bound in a neighbourhood of the true location whose radius is proportional to the affecting disturbance.Comment: 19 pages, 19 figure

    Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: A comprehensive review

    Get PDF
    Autonomous vehicles are at the forefront of future transportation solutions, but their success hinges on reliable perception. This review paper surveys image processing and sensor fusion techniques vital for ensuring vehicle safety and efficiency. The paper focuses on object detection, recognition, tracking, and scene comprehension via computer vision and machine learning methodologies. In addition, the paper explores challenges within the field, such as robustness in adverse weather conditions, the demand for real-time processing, and the integration of complex sensor data. Furthermore, we examine localization techniques specific to autonomous vehicles. The results show that while substantial progress has been made in each subfield, there are persistent limitations. These include a shortage of comprehensive large-scale testing, the absence of diverse and robust datasets, and occasional inaccuracies in certain studies. These issues impede the seamless deployment of this technology in real-world scenarios. This comprehensive literature review contributes to a deeper understanding of the current state and future directions of image processing and sensor fusion in autonomous vehicles, aiding researchers and practitioners in advancing the development of reliable autonomous driving systems

    Towards autonomous robotic systems: seamless localization and trajectory planning in dynamic environments

    Get PDF
    Evolucionar hacia una sociedad más automatizada y robotizada en la que podamos convivir con sistemas robóticos que desempeñen tareas poco atractivas o peligrosas para el ser humano, supone plantearnos, entre otras cuestiones, qué soluciones existen actualmente y cuáles son las mejoras a incorporar a las mismas. La mayoría de aplicaciones ya desarrolladas son soluciones robustas y adecuadas para el fin que se diseñan. Sin embargo, muchas de las técnicas implantadas podrían funcionar de manera más eficiente o bien adaptarse a otras necesidades. Asimismo, en la mayoría de aplicaciones robóticas adquiere importancia el contexto en el que desempeñan su función. Hay entornos estructurados y fáciles de modelar, mientras que otros apenas presentan características utilizables para obtener información de los mismos.Esta tesis se centra en dos de las funciones básicas que debe tener cualquier sistema robótico autónomo para desplazarse de forma robusta en cualquier tipo de entorno: la localización y el cálculo de trayectorias seguras. Además, los escenarios en los que se desea poner en práctica la investigación son complejos: un parque industrial con zonas cuyas características de entorno (usualmente geométricas) son utilizadas para que un robot se localice, varían; y entornos altamente ocupados por otros agentes móviles, como el vestíbulo de un teatro, en los que se debe considerar las características dinámicas de los demás para calcular un movimiento que sea seguro tanto para el robot como para los demás agentes.La información que se puede percibir de los escenarios con ambientes no homogéneos, por ejemplo de interior y exterior, suele ser de características diferentes. Cuando la información que se dispone del entorno proviene de sensores diferentes hay que definir un método que integre las medidas para tener una estimación de la localización del robot en todo momento. El tema de la localización se ha investigado intensamente y existen soluciones robustas en interior y exterior, pero no tanto en zonas mixtas. En las zonas de transición interior-exterior y viceversa es necesario utilizar sensores que funcionan correctamente en ambas zonas, realizando una integración sensorial durante la transición para evitar discontinuidades en la localización o incluso que el robot se pierda. De esta manera la navegación autónoma, dependiente de la correcta localización, funcionará sin discontinuidades ni movimientos bruscos.En entornos dinámicos es esencial definir una forma de representar la información que refleje su naturaleza cambiante. Por ello, se han definido en la literatura diferentes modelos que representan el dinamismo del entorno, y que permiten desarrollar una planificación de trayectorias directamente sobre las variables que controlan el movimiento del robot, en nuestro caso, las velocidades angular y lineal para un robot diferencial. Los planificadores de trayectorias y navegadores diseñados para entornos estáticos no funcionan correctamente en escenarios dinámicos, ya que son puramente reactivos. Es necesario tener en cuenta la predicción del movimiento de los obstáculos móviles para planificar trayectorias seguras sin colisión. Los temas abordados y las contribuciones aportadas en esta tesis son:• Diseño de un sistema de localización continua en entornos de interior y exterior, poniendo especial interés en la fusión de las medidas obtenidas de diferentes sensores durante las transiciones interior-exterior, aspecto poco abordado en la literatura. De esta manera se obtiene una estimación acotada de la localización durante toda la navegación del robot. Además, la localización se integra con una técnica reactiva de navegación, construyendo un sistema completo de navegación. El sistema integrado se ha evaluado en un escenario real de un parque industrial, para una aplicación logística en la que las transiciones interior-exterior y viceversa suponían un problema fundamental a resolver.• Definición de un modelo para representar el entorno dinámico del robot, llamado Dynamic Obstacle Velocity-Time Space (DOVTS). En este modelo aparecen representadas las velocidades permitidas y prohibidas para que el robot evite las colisiones con los obstáculos de alrededor. Este modelo puede ser utilizado por algoritmos de navegación ya existentes, y sirve de base para las nuevas técnicas de navegación desarrolladas en la tesis y explicadas en los siguientes puntos. • Desarrollo de una técnica de planificación y navegación basada en el modelo DOVTS. En este modelo se identifica un conjunto de situaciones relativas entre el robot y los obstáculos. A cada situación se asocia una estrategia de navegación, que considera la seguridad del robot para evitar colisiones, a la vez que intenta minimizar el tiempo al objetivo.• Implementación de una técnica de planificación y navegación basada en el modelo DOVTS, que utiliza explícitamente la información del tiempo para la planificación del movimiento. Se desarrolla un algoritmo A*-like que planifica los movimientos de los siguientes instantes, incrementando la maniobrabilidad del robot para la evitación de obstáculos respecto al método del anterior punto, a costa de un mayor tiempo de cómputo. Se analizan las diferencias en el comportamiento global del robot con respecto a la técnica anterior.Los diferentes aspectos que se han investigado en esta tesis tratan de avanzar en el objetivo de conseguir robots autónomos que puedan adaptarse a nuestra vida cotidiana en escenarios que son típicamente dinámicos de una forma natural y segura.<br /
    corecore