3 research outputs found

    A GEOMETRIC METHOD FOR COMPUTING THE NODAL DISTANCE DISTRIBUTION IN MOBILE NETWORKS

    Get PDF
    Abstract-This paper presents a geometrically based method for the calculation of the node-to-node distance distribution function in circular-shaped networks. In our approach, this function is obtained from the intersection volume of a sphere and an ellipsoid. The method is valid for both overlapping and non-overlapping networks. Simulation results and comparisons with methods in the literature demonstrate the efficacy of the approach. The relation between networks geometric parameters and distance statistics is explored. As an application example, we model distance-dependent path loss and investigate the impact of channel characteristics and networks size on signal absorption. The aforementioned model is a useful and lowcomplexity tool for system-level modeling and simulation of mobile communication systems

    Nonuniform traffic distribution model in reverse link of multilaterate/multiservie WCDMA/based systems

    Get PDF
    This paper focuses on the modeling of the reverse link of a wideband code division multiple access system in a nonhomogeneous environment with a single cell. Multiple traffic spatial and service nonuniformities are considered in the analytical model, and then, expressions for required transmitted power and the associated outage probability and block error rate are derived. Special attention is also paid to the effect caused by different transmission bit rates and the spatial location of the traffic nonuniformities. From the presented expressions, it is possible to set appropriate load thresholds to control the desired error rate. Although the model considers a single cell, results in terms of maximum allowable load can also be applicable in multicell scenarios.Peer Reviewe
    corecore