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Abstract—This paper presents a geometrically based method for
the calculation of the node-to-node distance distribution function in
circular-shaped networks. In our approach, this function is obtained
from the intersection volume of a sphere and an ellipsoid. The
method is valid for both overlapping and non-overlapping networks.
Simulation results and comparisons with methods in the literature
demonstrate the efficacy of the approach. The relation between
networks geometric parameters and distance statistics is explored. As
an application example, we model distance-dependent path loss and
investigate the impact of channel characteristics and networks size on
signal absorption. The aforementioned model is a useful and low-
complexity tool for system-level modeling and simulation of mobile
communication systems.

1. INTRODUCTION

An important characteristic of mobile networks is the random
distribution of the distance between pairs of communicating nodes.
Distance statistics are strictly related to system parameters and
performance metrics such as capacity, connectivity, link reliability,
error probability, hop distance, interference, path loss, etc. In fact,
knowledge of the node-to-node (nodal) distance distribution is essential
for system configuration, throughput analysis and protocol design [1–
4].

Calculation of distance statistics requires information about
networks topology and node spatial distribution. Among various
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approaches, methods that assume circular-shaped networks and/or
uniform node distribution are popular in mobile networking,
e.g., [1, 2, 5, 6]. The authors in [1], established the mathematical
framework for the distance distribution between a single point and
a round shaped-layer yielding analytical expressions for the outage
probability and block error rate in spread spectrum systems. In [2],
the distance density between two users uniformly distributed within a
circular disk was expressed in closed-form and applied in the analysis of
spectral efficiency in decentralised wireless networks. An accurate but
cumbersome expression for computing the distance density between
points in two circles was derived in [5]. In [6], the application
of polynomial regression techniques [7] led to simple expressions
that adequately describe the distance density between nodes in non-
overlapping circular-shaped networks.

In our analysis, we develop a geometrical-based method [8–15]
and provide simple integral expressions for the cumulative distribution
function (cdf) of the distance between nodes that are uniformly
located within circular-shaped networks. To the best of the author’s
knowledge, computation of distance distribution includes awkward
expressions and requires time-consuming calculations [5]. In the
proposed model, the desired cdf is easily obtained from the intersecting
volume of a sphere and an ellipsoid with dimensions defined from
networks size. Comparisons with simulation results and methods in the
literature validate the method. The study of the impact of separation
distance and networks radii on distance cdf provides interesting results.

Knowledge of the distance cumulative distribution function
allows the calculation of network characteristics such as network
capacity, cochannel interference, transmission quality and reliability of
communication paths [16, 17]. In this paper, we use the aforementioned
model and derive the distance-dependent path loss cdf. A discussion
on the relation between channel parameters, networks size and signal
absorption demonstrates the efficacy of the approach.

The rest of the paper is organized as follows: Section 2 describes
the system model and assumptions and Section 3 presents the proposed
model. Comparisons with simulation results and methods in the
literature are performed in Section 4. In Section 5, we investigate the
impact of system geometry on distance cdf and discuss an application
in path loss modeling. Finally, Section 6 concludes the paper.

2. SYSTEM MODEL AND ASSUMPTIONS

We consider two circular-shaped networks with radii R1,2 and centers
located at distance D from each other (within this context, we will
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(a) (b)

Figure 1. System geometry: (a) non-overlapping and (b) overlapping
networks.

call it separation distance), see Fig. 1. The condition D < R1 + R2

determines whether the networks intersect or not. The system is
equivalent to a single network when D = 0 and R1 = R2.

Now, let us consider the nodes A and B with Cartesian coordinates
(r1 cosφ1, r1 sinφ1) and (D + r2 cosφ2, r2 sinφ2), respectively, where
r1,2 ∈ [0, R1,2] and φ1,2 ∈ [0, 2π]. Under the assumption of uniform
node distribution, r1,2 and φ1,2 are random variables with densities

fr1,2 (r1,2) =

{
2r1,2

R2
1,2

, 0 ≤ r1,2 ≤ R1,2

0, otherwise

fφ1,2 (φ1,2) = U (0, 2π)

(1)

Notation U (x1, x2) denotes the uniform distribution in the range
[x1, x2]. In this system, the node-to-node distance is the random
variable

d =
√

(r1 cosφ1 − (D + r2 cosφ2))
2 + (r1 sinφ1 − r2 sinφ2)

2 (2)

3. THE NODAL DISTANCE DISTRIBUTION MODEL

In this Section, we compute the distance distribution between nodes
that are uniformly distributed within two circular-shaped networks. A
special case of this problem was studied in [1]. In that work, the cdf
of the distance between a circular disk and a single point was obtained
from the intersection area of two circles with radii the disk radius and
the link distance.

The proposed model calculates distance cdf as a function of three
independent variables, the networks radii and the separation distance.
Therefore, the cdf may be obtained from the intersection volume of
two solids; see, for example, [18–20].
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In 3D space, the circle with radius the link distance (see [1]) is
generalized to a sphere with same radius. Similarly, the generalization
of the circular disk with radius the network radius (see [1]) is a solid
with dimensions determined from the networks radii. The networks
radii are two of the independent variables in the problem. Obviously,
our scenario is similar to the one discussed in [1] for R2 → 0 (R1 → 0)
and disk radius equal to R1 (R2). Based on the above observations,
we set two of the semi-axes of the solid equal to R1 and R2. Our study
has shown that an ellipsoid with these semi-axes is a proper choice
for our model because it further allows the calculation of distance
cdf with adequate accuracy without increasing the complexity of the
formulation. The third semi-axis of the ellipsoid is related to the others
and it is set empirically (further discussion follows below). Finally, we
locate the centers of the sphere and the ellipsoid at distance D [19]
(recall that in [1], the centers of the two circles were placed at distance
equal to the distance between the single point and the network’s
center).

On the basis of the aforementioned analysis, we approximate the
desired cdf as the ratio between the intersection volume of an ellipsoid
with position and size determined from system geometry and a sphere
centered at the coordinates origin and radius the link distance to the
volume of the ellipsoid (in [1], the distance cdf was obtained from the
ratio of the overlapping area of two circles with radii the link distance
and the network’s radius to the area of the second circle).

Let us now consider an ellipsoid with semi-axes a, b and c and a
sphere with radius R. The solids are centered at (x0, 0, 0) with x0 ≥ a
and at (0, 0, 0), respectively, see Fig. 2. In spherical coordinates, their
surfaces are described by
(

cos2 φ sin2 θ

a2
+

sin2 φ sin2 θ

b2
+

cos2 θ

c2

)
r2
e −

2x0 cosφ sin θ

a2
re +

(x0

a

)2

−1 = 0 (3)
rc −R = 0 (4)

For arbitrary φ ∈ [−π, π] and θ ∈ [0, π] Equation (3) has two complex
solutions,

re± =
1

b2c2 cos2 φ sin2 θ + a2c2 sin2 φ sin2 θ + a2b2 cos2 θ(
x0b

2c2 cosφ sin θ

±abc
√

b2c2 cos2φ sin2 θ−(
x2

0−a2
)(

c2 sin2φ sin2 θ+b2 cos2 θ
))

(5)
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Figure 2. Model geometry.

Obviously, re± ∈ R+ that imposes on φ and θ the constraints:

x0bc cosφ sin θ

≥a
√

b2c2 cos2 φ sin2 θ − (
x2

0 − a2
) (

c2 sin2 φ sin2 θ + b2 cos2 θ
)

b2c2 cos2 φ sin2 θ ≥ (
x2

0 − a2
) (

c2 sin2 φ sin2 θ + b2 cos2 θ
)

(6)

In order to obtain the desired cdf, we first calculate the intersection
volume V between the sphere and the ellipsoid. In our analysis,
we compute V from the sum of the volumes of infinite number of
elementary pyramidal frustums. Each of these frustums is obtained
from the intersection of a semi-infinite pyramid defined from the four
rays that emanate from the coordinates origin at directions pointing
at angles (φ, θ), (φ + ∆φ, θ), (φ, θ + ∆θ) and (φ + ∆φ, θ + ∆θ) with
∆φ ¿ φ and ∆θ ¿ θ with i) the ellipsoid at r = re− and ii) the
ellipsoid (sphere) at r = re+ (r = R) when re+ < R (re+ ≥ R). The
top and bottom areas and the height of each frustum are r2

e−∆θ∆φ,
(min (re+, R))2 ∆θ∆φ and min (re+, R)− re−, respectively.

The volume of a pyramidal frustum with height h and top and
bottom areas A1,2 is h

(
A1 + A2 +

√
A1A2

)/
3 [21]. Considering also

the constraints imposed by (6) and the symmetry of the model with
respect to the z = 0 and y = 0 planes, we find that

V =
4
3

Φ∫

0

π/2∫

Θ

(
(min (re+, R))3 −r3

e−
)
sin θdθdφ, ∀θ ∈ [Θ, π/2] : re± ∈ R+

(7)
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with

Φ = tan−1

(
b

/√
x2

0 − a2

)
and Θ = cot−1

(
c

/√
x2

0 − a2

)
, (8)

the solutions of re+ = re− at θ = π/2 and φ = 0, respectively.
As a result, the desired cdf Fd (d) is approximately (recall that the

volume of the ellipsoid is 4πabc/3) equal to

Fd (d) ≈ 1
πabc

Φ∫

0

π/2∫

Θ

(
(min (re+, d))3 − r3

e−
)

sin θdθdφ (9)

where re± are obtained from (5) under the constraints of (6) and d ≡ R.
Now, let us relate a, b, c and x0 with system geometry. First, we

set x0 ≡ D, b ≡ R1 and c ≡ R2 (without loss of generality, we assume
that R1 ≥ R2). Our simulations have shown a strong dependence of
model’s accuracy on a. Based on simulation results and the fact that
a should be expressed in terms of the networks radii, we have found
that the overall accuracy increases significantly when we set† a equal
to the quadrant of the ellipse‡ with semi-axes the rest two semi-axes
of the ellipsoid R1 and R2, that is, [21]:

a = R1E
(√

1− (R2/R1)2
)

(10)

where E (·) is the complete elliptic integral of the second kind. For the
sake of notation simplicity, the right side of (10) will be denoted by
αR1,R2 .

As a result, the cdf of the distance between two uniformly
distributed nodes within two circular-shaped networks when D ≥
αR1,R2 is

Fd (d) ≈ 1
παR1,R2R1R2

Φ∫

0

π/2∫

Θ

(
(min (re+, d))3 − r3

e−
)

sin θdθdφ (11)

where re± are given from (5) (under the constraints of (6)), and Φ,
Θ from (8), by replacing a, b, c, and x0 with αR1,R2 , R1, R2 and D,
respectively.

Equation (11) is valid for x0 ≥ a, that is, when D ≥ αR1,R2 .
In order to calculate Fd (d) for D < αR1,R2 , we have developed an
empirical formula similar to (11). Our approach reduces, with simple
† The definition is among the simplest ones that has a clear physical meaning and provides
adequate results in terms of solution accuracy.
‡ This ellipse is also the projection of the ellipsoid on the x = 0 plane.
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transformations, the size of the ellipsoid and the separation distance
and calculates the distance cdf as before.

Let us consider an ellipsoid centered at D′ with semi-axes R
′
1,2 ≡

kR1,2 where k is a constant. In this case, it is also α
R
′
1,R

′
2

= kαR1,R2

due to (10). In the single disk scenario [2], simulations have shown
that (11) gives adequate results for R1,2 = Rα2

1,1

/
4 and D = αR,R/2 (R

is the disk radius). Therefore, we expect that R
′
1,2 =

{
Rα2

1,1

/
4, R1,2

}
at D = {0, αR1,R2}. As a result, the assumption of a linear relation
between k and D gives

R
′
1,2 =

1
4

(
α2

1,1 +
4− α2

1,1

αR1,R2

D

)
R1,2 (12)

Similarly, we expect that D′ = {αR1,R2/2, αR1,R2} at D =
{0, αR1,R2} which gives

D′ = (αR1,R2 + D)/2 (13)
assuming a linear dependence of D′ on D. However, in this case,
simulations have indicated a more complex relation. Therefore, we
extend (13) and write it as

D′ = (αR1,R2 + Dg (D))/2 (14)
with g (αR1,R2) = 1. The g (D) = D + 1 − αR1,R2 is the simplest
function that fulfils this constraint. Simulations have further shown
that a value of D′ that provides more accurate cdf values is obtained
from the averaging of (13) and (14) . Thus, we set

D′ ≡ 1
4

[2αR1,R2 + D (D + 2− αR1,R2)] (15)

Working as before, we find that the intersection volume is

V ′ =
4
3

∫ π

0

∫ π/2

0

(
min

(
r
′
e+, R

))3
sin θdθdφ, ∀φ ∈ [0, π] ,

θ ∈ [0, π/2] : r
′
e+ ∈ R+ (16)

where r
′
e+ is calculated from (5) under the constraints of (6) by

replacing a, b, c, and x0 with α
R
′
1,R

′
2
, R

′
1, R

′
2 and D′. In (16), we omit

r3
e− because re− /∈ R+ in the original ellipsoid. Finally, the desired cdf

is calculated (the volume of the ellipsoid is 4πα
R
′
1,R

′
2
R
′
1R

′
2

/
3) from the

expression

Fd (d) ≈ 1
πα

R
′
1,R

′
2
R
′
1R

′
2

π∫

0

π/2∫

0

(
min

(
r
′
e+, d

))3
sin θdθdφ (17)
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4. MODEL VALIDATION

In this section, we validate the proposed model through simulations
and comparisons with methods in the literature [1, 2, 6]. In the
following examples, we set R1 = 1 or D = 1; the rest of the distances
are non-dimensional quantities normalized to R1 or D, respectively.

First, we evaluate the model in representative scenarios that
describe overlapping and non-overlapping networks, see Fig. 3. Table 1
gives the geometric parameters (R1, R2 and D) of each scenario.

Table 1. Networks geometric parameters (R1 = 1).

Case 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) 2(c) 2(d)
R2 0.5 0.5 0.5 0.5 1 1 1 1
D 0.25 0.75 1.25 2 0 0.5 1.5 4

1(a) 1(b) 2(a) 2(b)

1(c) 1(d) 2(c) 2(d)

R  =2R1 2 R  =R   =R1 2

Figure 3. Illustration of networks coverage areas: Table’s 1 scenarios.

Figure 4 illustrates the calculated and the empirical (simulation)
distance cdf curves for the scenarios in Table 1. In the simulations, a
single node was uniformly positioned inside each network using (1). In
each scenario, we perform n independent simulation runs with different
r1,2 and φ1,2. The empirical cdf at distance di is

Fs (di) =
1
n

n∑

j=1

u
(
di − dj

)
, i = 0, 1..N (18)

with di = (D + R1 + R2) i/N+max (D −R1 −R2, 0) (1− i/N), dj the
distance computed from (2) in the jth simulation run, u (·) the unit
step function, n = 107 and N = 100.
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Figure 4. Distance cdf: cal-
culated (curves) and simulation
(symbols) results.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

F
d
(d

)

d

 Proposed model

 Fitting curves 

 Simulation data

(R
1
,R

2
)={0.50,0.50}

(R
1
,R

2
)={0.50,0.25}

(R
1
,R

2
)={0.25,0.25}

Figure 5. Distance distribution
curves: calculated, fitting and
simulation results.

Table 2. Mean absolute error between calculated and simulation
results.

Case 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) 2(c) 2(d)

ē× 102 1.2963 1.8183 0.9104 0.6475 1.7372 2.4164 0.8441 0.8278

In the non-overlapping networks scenarios, calculated and
simulation results are in close agreement. However, we notice that the
accuracy of the model decreases slightly when the networks intersect.

In order to perform a quantitative analysis of the illustrated
results, we compute the mean absolute error ē between calculated and
simulation results for the previous cases. This quantity is calculated
from the expression

ē =
1
N

N∑

i=0

|Fd (di)− Fs (di)| (19)

where di is uniformly distributed in [max (D−R1−R2, 0) , D+R1+R2].
In our study, parameter N is 50. The results are presented in Table 2.
Notice that ē increases when the networks intersect, but it is always
less than 2.5% of maxFd(d).

Figure 5 plots the distance cdf curves for the scenarios of non-
overlapping networks with radii (R1, R2) = {(0.5, 0.5) , (0.5, 0.25) ,
(0.25, 0.25)} and D = 1. The curves were obtained from (11),
simulations and fitting formulas. The last were calculated by
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Table 3. Mean absolute error between calculated, fitting and
simulation results.

(R1, R2) {0.5, 0.5} {0.5, 0.25} {0.25, 0.25}
Case CS CF CS CF CS CF

ē× 103 8.031 8.076 6.901 6.945 8.235 16.479

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

F
d
(d

)

d

Disk - Single point

 (R,D)={1,0.5}

 (R,D)={1,1}

 (R,D)={1,1.5}

Single disk

R=1

Figure 6. Distance cdf curves
obtained from the proposed model
(sold curves) and theory [1, 2]
(dashed curves).

0 1                      2                       3                        4
0.0

0.2

0.4

0.6

0.8

1.0

F
d
(d

)

d

R
2
=1.0

R
2
=0.5

D

Figure 7. Impact of D on
distance distribution function in
overlapping (solid curves) and
non-overlapping (dashed curves)
networks.

integrating the corresponding empirical polynomial expressions§ that
describe distance density between pair of nodes in non-overlapping
networks [6]. The three methods lead to similar results. Table 3 gives
mean absolute error between calculated and simulation (CS col.) or
fitting (CF col.) results. In all cases, the error is small.

We have already mentioned that the authors in [1] computed the
cdf of the distance between a single point and a circle in closed-form;
this problem has also been solved analytically for nodes uniformly
distributed within the same circular disk [2]. In our model, these
scenarios correspond to the cases R2 → 0 and R1 = R2, D → 0,
respectively. Here, we study certain representative examples of both
scenarios. Fig. 6 shows that the cdf curves obtained from our model
approximate the theoretical ones. In the first scenario, the differences
are mainly due to the fact that the proposed model computes the
§ Let set pRi,Rj

where Ri = i/10 and Rj = j/10, i, j = 1, 2..9 : i + j ≤ 10, the fitting

polynomials (their coefficients are given in Tables 4-7 in [6]) that describe distance pdf for
given R1,2. The desired pdf is p0.5,0.5 for R1,2 = 0.5. In the second and third scenarios, the
pdfs are (see Section 4 in [6]) (p0.2,0.5 + p0.3,0.5)/2 and (p0.2,0.2 + p0.3,0.3 + 2p0.2,0.3)/4,
respectively.
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Table 4. Mean absolute error between calculated and theoretical [1, 2]
results.

(R, D) {1, 0.5} {1, 1} {1, 1.5} {1, 0}
ē× 102 1.7163 2.2856 2.4028 1.7216

distance cdf from the intersection volume of two solids instead of the
intersection area of two plane objects (as in [1]). In other words, it
solves a two-dimensional problem in the 3D space which increases the
approximation error of (11) and (17). In the second scenario, networks
fully overlap; thus, the approximation error of (17) reduces model’s
accuracy. Table 4 presents the mean absolute error between calculated
and theoretical results for the previous cases. Comparison between
the data in Tables 3 and 4, shows that ē increases when the networks
intersect, as it was expected.

In this section, representative examples demonstrated the efficacy
of our approach. Comparisons with simulation and fitting results
validated the accuracy of the model when the networks do not
intersect. In this case, the mean absolute error between calculated and
simulation results is less than 1%. When networks overlap, model’s
accuracy decreases slightly primarily due to the fact that (17) is an
approximation of (11). In particular, error values up to 2.5% have
been reported. However, even in this case, considering the simplicity
of the model the results are adequate when we can not describe distance
statistics in closed-form. At this point, recall that (10), (12) and (15)
have been found empirically through simulations but achieve a good
trade-off between complexity and accuracy. Obviously, more complex
expressions would reduce the modeling error at the cost of higher
complexity.

5. APPLICATIONS AND DISCUSSION

This section consists of two parts. Firstly, we investigate the
impact of networks size and separation distance on the distance
cdf. The results yield some interesting conclusions about the
dependence of nodal distance on networks geometric parameters. In
order to show the applicability of the method, we model distance-
dependent path loss. A brief discussion of the relation between
networks geometry, propagation characteristics and microwave signal
attenuation completes the analysis.
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5.1. Impact of Networks Geometry

Here, we explore the relation between distance cdf, separation distance
and networks radii. In the following examples, we choose R1 = 1 as
reference distance.

Figure 7 plots distance cdf for D that ranges from 0 to 3 with steps
equal to 0.25. The scenarios R2 = 1 and R2 = 0.5 are considered.

The cdf curves shift to the right with increasing D. In non-
overlapping networks, any change in D shifts equally the cdf curve
along the d-axis; the shift is smaller when networks intersect. Apart
from this, in the second case, curves are always minimized at d = 0.
Comparing the scenarios with different radius, we see that the cdf
curves shift to the right when R2 = 1; the slope of the cdf curves
varies also.

Next, we investigate the impact of networks radii on distance
cdf. The separation distance is 0.5 and 2 (first and second scenarios,
respectively). In the first (second) scenario, R2 varies from 0 to 2 (0 to
4) with step 0.2 (0.4). In the first case, the networks intersect because
D < R1; in the second one, they overlap only when R2 > 1. The
distance cdf curves are plotted in Figs. 8 and 9, respectively.

0                                1                               2                               3
0.0

0.2

0.4

0.6

0.8

1.0

F
d
(d

)

d

R
2

Figure 8. Impact of networks
radii on Fd (d); R2 varies from 0
to 2 with step 0.2.

0               1               2               3              4               5              6
0.0

0.2

0.4

0.6

0.8

1.0

R
2
=4R

2
=0

F
d
(d

)

d

R
2

Figure 9. Impact of networks
radii on Fd (d); R2 varies from 0
to 4 with step 0.4.

Figure 8 shows that the cdf curves shift to the right with increasing
R2. The shift increases with R2 up to a point beyond which it remains
constant. On the other hand, the slope of the curves decreases with
R2. In Fig. 9, we observe a similar behavior for overlapping networks.
However, if the networks do not overlap, the cdf curves intersect at
d ≈ D and the minimum (maximum) d at which the cdf is one (zero)
increases (decreases) with R2.
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5.2. An Application in Radio Wave Propagation

The prediction of microwave attenuation [22–33] is important in the
analysis of wireless systems. Signal propagation is strongly affected by
the dissipation of the power radiated by the transmitter that is related
to the distance between the communicating nodes. The distance-
dependent path loss at a distance d is usually expressed in natural
units as

L = L0 (d0/d)n (20)

where L0 is the path loss at a reference distance d0 and n is the
path loss exponent [34–36]. For notational simplicity, we set d0 ≡ D
and L0 = 0 dB (similar assumptions are common in the literature,
e.g., [5, 6]) and (20) becomes

L = (D/d)n (21)

In this context, FL (L) is obtained from Fd (d). For this reason,
we determine the set of the d-axis such that (D/d)n ≤ L (due to (21)).
Obviously, it is

FL (L) = Prob
[
d ≥ DL−1/n

]
= 1− Fd

(
DL−1/n

)
(22)

where Prob
[
d ≥ DL−1/n

]
is the probability that nodal distance d is

greater than DL−1/n.
As a sample application, we consider the scenarios with networks

radii (R1, R2) = {(D/4, D/4) , (D/2, D/4) , (D/2, D/2)} (cases (a)–
(c), respectively). In the illustrated examples, n takes the values 2,
4.2 and 7.7 that correspond to free-space, urban and dual carriage

-20 -10 0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

F
L
(L

)

L-L
0
 (dB)

n = 2

n = 4.2

n = 7.7

Figure 10. Distance dependent path loss cdf curves; case (a): solid
curves, case (b): dashed curves, case (c): dotted curves.
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highway propagation, respectively [22]. Fig. 10 illustrates the distance-
dependent path loss cdf curves as a function of the difference L − L0

(in dB). Clearly, path loss cdf depends on both path loss exponent
and system geometry. The curves shift to the right with increasing n,
which means that the transmission range decreases with n, and show
a stronger dependence on n as the networks coverage areas approach
to each other. Similar conclusions were drawn in [6].

6. CONCLUSION

We presented a geometrical-based model for the calculation of the
cumulative distribution function of the distance between uniformly
distributed nodes in circular-shaped networks. The derived results
are in close agreement with data obtained from fitting methods in
the literature and simulations. Comparisons with theory showed that
the method adequately describes the nodal distance cdf in single
networks also. The study of the impact of networks geometric
parameters on distance statistics clarified basic differences between
overlapping and non-overlapping networks. In a sample application,
we modeled distance-dependent path loss and discussed the relation
between system geometry, path loss exponent and signal absorption.
The method computes distance cdf without complicated calculations
and provides adequate accuracy. It is a useful tool for system-
level simulations of wireless networks with applications in mobile
networking.
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