1,352 research outputs found

    Nonuniform average sampling and reconstruction of signals with finite rate of innovation

    Get PDF
    From an average ( ideal) sampling/reconstruction process, the question arises whether the original signal can be recovered from its average (ideal) samples and, if so, how. We consider the above question under the assumption that the original signal comes from a prototypical space modeling signals with a finite rate of innovation, which includes finitely generated shift-invariant spaces, twisted shift-invariant spaces associated with Gabor frames and Wilson bases, and spaces of polynomial splines with nonuniform knots as its special cases. We show that the displayer associated with an average (ideal) sampling/reconstruction process, which has a well-localized average sampler, can be found to be well-localized. We prove that the reconstruction process associated with an average (ideal) sampling process is robust, locally behaved, and finitely implementable, and thus we conclude that the original signal can be approximately recovered from its incomplete average (ideal) samples with noise in real time. Most of our results in this paper are new even for the special case when the original signal comes from a finitely generated shift-invariant space

    Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples

    Full text link
    In this paper, we consider the problem of recovering a compactly supported multivariate function from a collection of pointwise samples of its Fourier transform taken nonuniformly. We do this by using the concept of weighted Fourier frames. A seminal result of Beurling shows that sample points give rise to a classical Fourier frame provided they are relatively separated and of sufficient density. However, this result does not allow for arbitrary clustering of sample points, as is often the case in practice. Whilst keeping the density condition sharp and dimension independent, our first result removes the separation condition and shows that density alone suffices. However, this result does not lead to estimates for the frame bounds. A known result of Groechenig provides explicit estimates, but only subject to a density condition that deteriorates linearly with dimension. In our second result we improve these bounds by reducing the dimension dependence. In particular, we provide explicit frame bounds which are dimensionless for functions having compact support contained in a sphere. Next, we demonstrate how our two main results give new insight into a reconstruction algorithm---based on the existing generalized sampling framework---that allows for stable and quasi-optimal reconstruction in any particular basis from a finite collection of samples. Finally, we construct sufficiently dense sampling schemes that are often used in practice---jittered, radial and spiral sampling schemes---and provide several examples illustrating the effectiveness of our approach when tested on these schemes

    Irregular and multi--channel sampling of operators

    Get PDF
    The classical sampling theorem for bandlimited functions has recently been generalized to apply to so-called bandlimited operators, that is, to operators with band-limited Kohn-Nirenberg symbols. Here, we discuss operator sampling versions of two of the most central extensions to the classical sampling theorem. In irregular operator sampling, the sampling set is not periodic with uniform distance. In multi-channel operator sampling, we obtain complete information on an operator by multiple operator sampling outputs
    • …
    corecore