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The classical sampling theorem for bandlimited functions has recently been generalized
to apply to so-called bandlimited operators, that is, to operators with band-limited Kohn–
Nirenberg symbols. Here, we discuss operator sampling versions of two of the most central
extensions to the classical sampling theorem. In irregular operator sampling, the sampling
set is not periodic with uniform distance. In multi-channel operator sampling, we obtain
complete information on an operator by multiple operator sampling outputs.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The so-called classical sampling theory addresses the problem of determining and reconstructing functions from count-
ably many values that are attained on a discrete subset of the real line. The fundamental result in this theory is attributed
to Whittaker, Kotel’nikov and Shannon. It asserts that a function bandlimited to an interval of length Ω can be recovered
from the values of the function sampled regularly at Ω values per unit interval.

During the last few years the herein considered sampling theory for operators has been developed. It is motivated by the
operator identification problem in communications engineering. There, the objective is to identify a channel operator from
knowledge of the channel’s action on a chosen input signal. A well known identification result states, for example, that any
time-invariant channel operator is fully determined by its action on the Dirac impulse. Already in the 1960s, Kailath [14]
and Bello [2] proclaimed that this simple identifiability result on time-invariant operators could be generalized to slowly
time-varying operators, that is, to operators whose spreading functions are supported on sets of measure less than or equal
to one. The spreading function is the symplectic Fourier transform of the operator’s Kohn–Nirenberg symbol. The assertions
of Kailath and Bello were confirmed in [19,28].

The identifiability results in [19,28] use weighted sums of regularly spaced delta impulses as identifiers for Hilbert–
Schmidt operators with bandlimited Kohn–Nirenberg symbols. The discrete support of such a tempered distribution we shall
refer to in the following as sampling set for operator sampling. Together with the fact that the classical sampling theorem
can be seen as a special case of the identifiability results for bandlimited operators [19,28,30]—consider a bandlimited
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function as a multiplication operator which can be determined from its action on a regularly spaced sum of Dirac impulses—
this has led to the development of the herein considered sampling theory for operators.

In this paper, we state and prove operator sampling versions of key generalizations of the classical sampling theorem for
functions. Additional operator sampling results for classes of pseudodifferential operators are given in [30].

One central extension of the classical sampling theorem considers irregular or nonuniform sampling sets, see [23] and
references therein. In practice, sampling with uniform distance is hardly realizable because of imperfections in data acqui-
sition devices or perturbations during the collecting of data. As it is similarly challenging to generate regularly spaced sums
of impulses for operator sampling, the consideration of irregularly placed impulses as identifiers for operators is natural.
Here, we will give separation and Beurling density results for operator sampling which resemble corresponding results in
the classical sampling theory for functions.

The feasibility of the classical sampling theorem in case of large bandwidth signals is limited by the sampling rates
achievable in state of the art hardware. This problem is addressed through multi-channel sampling as pioneered by Papoulis
[26]. Multi-channel sampling employs a number of samplers in parallel, thereby allowing the acquisition of samples to be
carried out in each channel at a fraction of the sampling rate foreseen by the classical sampling theorem. Multi-channel
sampling in the theory of operator sampling employs similarly the combination of multiple outputs from sampling proce-
dures in order to reduce the rate at which impulses have to be sent. In addition, multi-channel sampling for operators, that
is, multiple output sampling for operators, allows to identify operators whose Kohn–Nirenberg symbols are only bandlimited
to an area of measure larger than one, as shown below. Note that in single output operator sampling, only operators with
bandlimitations given by sets of measure less than one can be identified. Larger bandwidth of the Kohn–Nirenberg symbol
cannot be compensated by an increase of the so-called sampling rate.3

We formulate and prove our results for Hilbert–Schmidt operators. Means for generalizing such results to non compact
operators are outlined in [27,30].

This paper is organized as follows. In Section 2, we give some background for operator sampling and introduce operator
Paley–Wiener spaces. In Section 3 we state the uniform operator sampling result for operator Paley–Wiener spaces as
given in [29]. We include a new proof of this result, a proof that allows for generalizations to the setting of irregular
and multi-channel operator sampling. We give a generalization to operator classes which have not necessarily bandlimited
Kohn–Nirenberg symbols. In Section 4, we develop irregular operator sampling for operator Paley–Wiener spaces. Also, we
consider irregular sampling of operators whose Kohn–Nirenberg symbols are not bandlimited in view of Kramer’s Lemma
setting. Multi-channel operator sampling is discussed in Section 5.

2. Preliminaries

The Fourier transform on L2(Rd) is densely defined by

F ( f )(ξ) = f̂ (ξ) =
∫
Rd

f (t)e−2π it·ξ dt, f ∈ L1(Rd)∩ L2(Rd).
Similarly, the symplectic Fourier transform Fs : L2(R2d) → L2(R2d) is densely defined by

Fs f (t, ν) =
∫
Rd

∫
Rd

f (x, ξ) e−2π i(ν·x−ξ ·t) dx dξ, f ∈ L1(R2d)∩ L2(R2d).
For brevity of notation, we shall refrain from marking equalities and inequalities that hold in the L2-sense with the custom-
ary a.e. whenever the context is unambiguous.

Let SΩ =∏d
k=1[−Ωk

2 ,
Ωk
2 ] with Ω = (Ω1,Ω2, . . . ,Ωd).

Definition 1. The Paley–Wiener space with bandwidth Ω is defined by

PW(SΩ) = { f ∈ L2(Rd): supp f̂ ⊆ SΩ

}
.

It is known that if an expansion for f ∈ PW(SΩ) converges in the norm of PW(SΩ), that is, in the L2-norm, then it
converges pointwise and uniformly over Rd (see p. 57 in [10]). Note that PW(SΩ) is isometrically isomorphic to L2(SΩ)

due to Plancherel’s theorem. For simplicity of notation, we shall denote by L2(SΩ) the subspace of L2(Rd) which consists
of L2(Rd) functions supported on SΩ .

The classical sampling theorem shown independently by Whittaker, Kotel’nikov and Shannon is generalized by the fol-
lowing oversampling theorem [3]. It is based on possibly collecting samples more often than the sampling rate prescribes.

3 Operator sampling is not simply an higher dimensional analogue of the 1-d Shannon sampling theorem. In the case of an operator acting on L2(R),
the operator’s 2-dimensional Kohn–Nirenberg symbol is to be determined from a signal defined on R. No access to sample values of the Kohn–Nirenberg
symbol is given, as is the case in 2-dimensional Shannon sampling theory.
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The sampling rate, usually called Nyquist–Landau rate, for a function in PW(SΩ) is defined to be the Lebesgue measure of
the set SΩ .

Here and in the following we use the notation

A(F ) � B(F ), F ∈ F ,

if there exist positive constants c and C such that c A(F ) � B(F ) � C A(F ) for all objects F in the set F .

Theorem 2. Let Ω = (Ω1, . . . ,Ωd), T = (T1, . . . , Td) with Tk,Ωk > 0 and Tk · Ωk < 1 for all k ∈ Z. For 2
T = ( 2

T1
, . . . , 2

Td
) and

ϕ ∈ PW(S 2
T −Ω

) with ϕ̂ = 1 on SΩ , we have the sampling expansion

f (t) = T
∑

n∈Zd

f (nT )ϕ(t − nT ), f ∈ PW(SΩ), (1)

with uniform and L2(Rd)-convergence. Moreover, (1) is stable in the sense that

‖ f ‖2
L2 �

∑
n∈Zd

∣∣ f (nT )
∣∣2, f ∈ PW(SΩ).

In practice, a stable sampling expansion guarantees that perturbations in the sampling output and in the reconstruction
procedure are controlled by error bounds on the input function and vice versa.

The development of operator sampling necessitates the use of some rudimentary distribution theory. The space of dis-
tributions chosen here is the dual of the Feichtinger algebra S0(Rd). The dual S ′

0(R
d) is a Banach space with S(Rd) �

S0(Rd) � L2(Rd) � S ′
0(R

d) � S ′(Rd), where S(Rd) denotes the Schwartz class of rapidly decaying functions and S ′ its dual,
the space of tempered distribution. There are several equivalent definitions of the Feichtinger algebra S0(Rd) [7]. We choose
the characterization of S0(Rd) via the short time Fourier transform.

Definition 3. The Feichtinger algebra is defined by

S0
(
Rd)= { f ∈ L2(Rd): Vg f (t, ν) ∈ L1(R2d)},

where Vg f (t, ν) = 〈 f , Mν Ttg〉 is the short-time Fourier transform of f with respect to the Gaussian g(x) = e−π‖x‖2
. The

norm on S0(Rd) is given by ‖ f ‖S0 = ‖Vg f ‖L1 .

In this paper we consider the sampling problem for Hilbert–Schmidt operators only.

Definition 4. The class of Hilbert–Schmidt operators H S(L2(Rd)) consists of bounded linear operators on L2(Rd) which can
be represented as integral operators of the form

H f (x) =
∫

κH (x, t) f (t)dt, f ∈ L2(Rd),
with kernel κH ∈ L2(R2d).

The linear space of Hilbert–Schmidt operators H S(L2(Rd)) becomes a Hilbert space if it is endowed with the Hilbert
space structure of L2(Rd), that is, by

〈H1, H2〉H S = 〈κH1 , κH2〉L2 .

In view of pseudodifferential operators, the Kohn–Nirenberg symbol σH [8,17] of a Hilbert–Schmidt operator H is given by

σH (x, ξ) =
∫

κH (x, x − t)e−2π it·ξ dt.

It leads to the operator representation

H f (x) =
∫

σH (x, ξ) f̂ (ξ)e2π ix·ξdξ, f ∈ L2(Rd).
In time–frequency analysis and communication engineering, the spreading function ηH of a Hilbert–Schmidt operator H is
commonly considered. It is given by

ηH (t, ν) =
∫

κH (x, x − t)e−2π ix·ν dx
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and leads to

H f (x) =
∫ ∫

ηH (t, ν)Mν Tt f (x)dt dν, f ∈ L2(Rd), (2)

where the time-shift (translation) and frequency-shift (modulation) operators Tt and Mν are defined by Tt f (x) = f (x − t)

and M̂ν f (γ ) = f̂ (γ − ν), respectively. That is, a Hilbert–Schmidt operator H is a continuous superposition of translation
and modulation operators with coefficient function ηH . The identity (2) is understood weakly, namely

〈H f , g〉 =
∫ ∫

ηH (t, ν)〈Mν Tt f , g〉dt dν, g ∈ L2(Rd).
As ηH = FsσH , operators with band-limited Kohn–Nirenberg symbols are operators whose spreading functions are com-
pactly supported.

In communications, the time-varying operator H is also commonly represented by its time-varying impulse response
hH (t, x) with

H f (x) =
∫

hH (t, x) f (x − t)dt,

where hH (t, x) = κH (x, x − t) = ∫ ηH (t, ν)e2π ixν dν a.e. Note that

‖H‖H S = ‖κH‖L2 = ‖hH‖L2 = ‖σH‖L2 = ‖ηH‖L2 .

Definition 5. The operator Paley–Wiener space of operators bandlimited to S ⊆ R2d is

OPW(S) = {H ∈ H S
(
L2(Rd)): supp FsσH ⊆ S

}
.

In the engineering literature, channels modeled by operators with supp FsσH = suppηH ⊆ [a1,b1]× · · ·×[a2d,b2d]
are commonly referred to as underspread or slowly time-varying operators if volume ([a1,b1]× · · ·×[a2d,b2d]) =
(b1 − a1)×· · ·×(b2d − a2d) � 1 and as overspread operators else (see, for example, respective references in [19]).

Observe that H ∈ OPW(S), S compact, implies ηH = FsσH ∈ L2(R2d) with compact support. As then ηH (t, ·) ∈ L2(Rd) for
almost every t ∈ Rd , we have, with Ω sufficiently large, hH (t, ·) ∈ PW(−Ω

2 , Ω
2 ) for almost every t ∈ Rd , a fact that will be

used frequently below.
We formulate the operator identification and sampling problems as follows.4

Definition 6. An operator class H ⊆ H S(L2(Rd)) is identifiable if all H ∈ H extend to a domain containing a so-called
identifier f ∈ S ′

0(R
d) with

‖H‖H S � ‖H f ‖L2 , H ∈ H. (3)

The operator class H ⊆ H S(L2(Rd)) permits operator sampling if one can choose f in (3) with discrete support in Rd in
the distributional sense. In that case, supp f is called sampling set for H.

Note that any H ∈ OPW(S) with S compact can be extended to a bounded linear operator H : S ′
0(R

d) −→ L2(Rd).

Proposition 7. For S compact there exists C S > 0 with

‖H f ‖L2 � C S ‖ f ‖S ′
0
‖H‖H S , H ∈ OPW(S), f ∈ S ′

0

(
Rd). (4)

Proposition 7 can be deduced from more involved results in [6,33]. We include a proof of Proposition 7 in Appendix A
as the case considered here is significantly simpler than the general case.

Proposition 7 implies that proving identifiability of a Hilbert–Schmidt operator by an element in S ′
0(R

d) is equivalent to
providing the lower bound A in (3), as an upper bound is given by B = C S ‖ f ‖S ′

0
.

Given a separable Hilbert space X , a sequence of elements { fk}k∈Z in X is called a frame for X if∑
k∈Z

∣∣〈 f , fk〉
∣∣2 � ‖ f ‖2

X , f ∈ X .

To each frame { fk}k∈Z for X exists a so-called dual frame { f̃k}k∈Z of { fk}k∈Z for X with

f =
∑
k∈Z

〈 f , fk〉 f̃k =
∑
k∈Z

〈 f , f̃k〉 fk, f ∈ X .

Moreover, a frame which does not form a frame if we remove any element from it is called a Riesz basis, or, also, exact
frame. A sequence { fk}k∈Z is called a Riesz sequence if it is a Riesz basis for span{ fk}k∈Z [5,9,18].

4 See [19] for a more general concept of operator identification.
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3. Uniform sampling of Hilbert–Schmidt operators

Theorem 2 states that a bandlimited, square integrable function can be reconstructed by its values sampled at a suffi-
ciently dense sampling grid. In this section, we first consider the sampling problem for operators whose Kohn–Nirenberg
symbols are bandlimited in the time–frequency plane. We shall state and prove all theorems for d = 1 for convenience.

Operators with rectangular bandlimitation on their Kohn–Nirenberg symbols are the starting point of operator sampling
[29,30].

Theorem 8. For Ω, T , T ′ > 0 and 0 < T ′Ω � T Ω � 1, choose ϕ ∈ PW([−( 1
T − Ω

2 ), 1
T − Ω

2 ]) with ϕ̂ = 1 on [−Ω
2 , Ω

2 ] and r ∈ L∞(R)

with supp r ⊂ [−T + T ′, T ] and r = 1 on [0, T ′]. Then OPW([0, T ′]×[−Ω
2 , Ω

2 ]) permits operator sampling as

‖H‖H S = √
T

∥∥∥∥H
∑
k∈Z

δkT

∥∥∥∥
L2

, H ∈ OPW
([

0, T ′]×[−Ω
2 , Ω

2

])
,

and operator reconstruction is possible by means of the L2-convergent series

hH (t, x) = r(t)T
∑
n∈Z

(
H
∑
k∈Z

δkT

)
(t + nT )ϕ(x − t − nT ).

In [19], the proof of the identifiability of OPW([0, T ′]×[−Ω
2 , Ω

2 ]) is based on the unitarity of the Zak transform. For
clarity and to indicate directions for generalizations of this theorem, we prove Theorem 8 through elementary orthonormal
basis expansions based on Fourier series.

Proof. For almost every t ∈ R, we have ηH (t, ·) ∈ L2[−Ω
2 , Ω

2 ] ⊆ L2[− 1
2T , 1

2T ] and, by expanding for such t the function

ηH (t, ν) with respect to the orthonormal basis {√T e−2π i(t+nT )ν}n∈Z of L2[− 1
2T , 1

2T ], we obtain the L2[−Ω
2 , Ω

2 ]-convergent
series

ηH (t, ν) =
∑
n∈Z

〈
ηH (t, ν),

√
T e−2π i(t+nT )ν

〉√
T e−2π i(t+nT )ν = T

∑
n∈Z

hH (t, t + nT ) e−2π i(t+nT )ν . (5)

This series extends to L2(R) convergence via

ηH (t, ν) = T ϕ̂(ν)
∑
n∈Z

hH (t, t + nT ) e−2π i(t+nT )ν

with ϕ chosen to satisfy ϕ ∈ PW([−( 1
T − Ω

2 ), 1
T − Ω

2 ]) and ϕ̂ = 1 on [−Ω
2 , Ω

2 ]. Then, for almost every t ∈ R, we have

hH (t, x) = T
∑
n∈Z

hH (t, t + nT )

∫
ϕ̂(ν)e−2π i(t+nT )νe2π iνx dν (6)

= T
∑
n∈Z

hH (t, t + nT )ϕ(x − t − nT ), x ∈ R, (7)

where we used the L2-continuity of the Fourier transform to interchange sum and integration in (6). On the other hand, we
have (H

∑
k δkT )(x) =∑k hH (x − kT , x) ∈ L2(R) so that (H

∑
k δkT )(t + nT ) =∑k hH (t + nT − kT , t + nT ). Now,

r(t)

(
H
∑
k∈Z

δkT

)
(t + nT ) = hH (t, t + nT ), t ∈ [0, T ′], (8)

since supp hH (·, x) ⊆ [0, T ′] ⊆ [0, T ]. With (7), this gives

hH (t, x) = r(t)T
∑
n∈Z

(
H
∑
k∈Z

δkT

)
(t + nT )ϕ(x − t − nT ), (9)

a formula which contains the identifier
∑

k∈Z
δkT for OPW([0, T ′]×[−Ω

2 , Ω
2 ]). Note that the L2-convergent series in (9)

converges also pointwise and uniformly in x for a.e. t [10].
Moreover, since (5) was an orthonormal basis expansion, Parseval’s identity gives

∥∥ηH (t, ·)∥∥2
L2=T

∑∣∣hH (t, t + nT )
∣∣2=T

∑∣∣∣∣r(t)(H
∑

δkT

)
(t + nT )

∣∣∣∣2, a.e. t ∈ R,
n∈Z n∈Z k∈Z
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so that∥∥hH (t, ·)∥∥2
L2 = T

∑
n∈Z

∣∣∣∣r(t)(H
∑
k∈Z

δkT

)
(t + nT )

∣∣∣∣2, a.e. t ∈ R,

and

‖hH‖2
L2 =

T ′∫
0

∥∥hH (t, ·)∥∥2
L2 dt = T

T ′∫
0

∑
n∈Z

∣∣hH (t, t + nT )
∣∣2 dt = T

T∫
0

∑
n∈Z

∣∣hH (t, t + nT )
∣∣2 dt

= T

T∫
0

∑
n∈Z

∣∣∣∣(H
∑
k∈Z

δkT

)
(t + nT )

∣∣∣∣2 dt = T

∫
R

∣∣∣∣(H
∑
k∈Z

δkT

)
(t)

∣∣∣∣2 dt = T

∥∥∥∥H
∑
k∈Z

δkT

∥∥∥∥2

L2

as hH (t, t + nT ) and (H
∑

k δkT )(t + nT ) vanish on the interval [T ′, T ]. The operator class OPW([0, T ′]×[−Ω
2 , Ω

2 ]) is identi-

fiable by
∑

k∈Z
δkT as we showed ‖H‖H S = ‖hH‖L2 = √

T ‖H
∑

k∈Z
δkT ‖L2 . �

One crucial ingredient in the proof above is the fact that for each t , the set Et = {√T e−2π i(t+nT )ν}n∈Z is an orthonormal
basis for L2[− 1

2T , 1
2T ]. Note that the functionals corresponding to Et depend on t which is necessary to associate hH (t, t +

nT ) with H g(t + nT ) for some identifier g . Another important ingredient is the support condition on hH (·, x). It guarantees
that no aliasing in the infinite summation H(

∑
k∈Z

δkT )(t + nT ) takes place as for each t the sum is reduced to a single non
zero summand hH (t, t + nT ).

We assume in Theorem 8 that the area of the rectangle [0, T ′]×[−Ω
2 , Ω

2 ] is less than or equal to 1. This assumption co-
incides with the one given in Kailath’s conjecture for identifiability of such operator classes [14]. For 1 < T ′Ω � T Ω , perfect
reconstruction of hH (t, x) from its samples is not possible since the sampling rate 1

T is strictly less than the Nyquist–Landau
rate Ω for hH (t, ·). In this case, not only operator sampling, but also operator identification by any tempered distribution as
single input signal is not possible as shown in [31].

Now we extend Theorem 8 to the case where hH (t, ·) lies in a shift-invariant space other than the Paley–Wiener space.
Given a Riesz sequence {ϕ(· − nT )}n∈Z in L2(R), let

V T (ϕ) = span
{
ϕ(· − nT )

}=
{∑

n∈Z

cnϕ(· − nT ): {cn}n∈Z ∈ l2
}
.

Let HT ,ϕ ⊆ H S(L2(R)) consist of integral operators H with hH ∈ L2[0, T ] ⊗ V T (ϕ). Note that the proof of Proposition 7
relied on the compactness of the support of FsσH . As this is not stipulated in this more general setup, not every operator
considered here maps boundedly S ′

0(R) to L2(R).
We require the shift-invariant space V T (ϕ) to be a reproducing kernel Hilbert space [10].

Definition 9. A Hilbert space X of complex-valued functions on a given domain D �= ∅ is a reproducing kernel Hilbert space
if there exists a kernel k(s, t) defined on D × D satisfying k(·, t) ∈ X for all t ∈ D and f (t) = 〈 f (·),k(·, t)〉X for all f ∈ X and
t ∈ D . Such a function k(s, t) is called a reproducing kernel.

For example, if ϕ is a complex-valued integrable function well-defined everywhere on R, and if ϕ satisfies∑
n∈Z

∣∣ϕ(t + n)
∣∣2 < ∞, t ∈ [0,1],

then V 1(ϕ) is a reproducing kernel Hilbert space [16]. Alternatively, if ϕ is continuous and belongs to the Wiener amalgam
space W (L∞, l1), that is, to the subspace of L2(R) defined by the norm

‖ϕ‖W (L∞,l1) =
∑
n∈Z

sup
t∈[0,1]

∣∣ϕ(t + n)
∣∣< ∞,

then V 1(ϕ) is a reproducing kernel Hilbert space as well [1].

Theorem 10. Assume that V T (ϕ) is a reproducing kernel Hilbert space and its reproducing kernel k(s, t) satisfies the condition that
{k(·, t + nT )}n∈Z is a frame for V T (ϕ) for each t ∈ [0, T ]. Then

∑
k∈Z

δkT identifies HT ,ϕ , that is,

‖H‖H S �
∥∥∥∥H
∑

δkT

∥∥∥∥
L2

, H ∈ HT ,ϕ .
k∈Z
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The reconstruction of operators is possible by

hH (t, x) = χ[0,T ](t)
∑
n∈Z

(
H
∑
k∈Z

δkT

)
(t + nT )k∗

n(x, t),

where {k∗
n(·, t)}n∈Z is a dual frame of {k(·, t + nT )}n∈Z for a.e. t ∈ [0, T ].

Proof. Since hH (t, ·) ∈ V T (ϕ) and {k(·, t + nT )}n∈Z is a frame for V T (ϕ) for each t ∈ [0, T ],
hH (t, x) =

∑
n∈Z

〈
hH (t, ·),k(·, t + nT )

〉
k∗

n(x, t),

where {k∗
n(·, t)}n∈Z is a dual frame of {k(·, t + nT )}n∈Z . Since k(s, t) is a reproducing kernel of V T (ϕ),

hH (t, x) =
∑
n∈Z

hH (t, t + nT )k∗
n(x, t)

and ∥∥hH (t, ·)∥∥2
L2 �

∑
n∈Z

∣∣hH (t, t + nT )
∣∣2. (10)

Formally, we have (H
∑

k∈Z
δkT )(t + nT ) =∑k∈Z

hH (t + nT − kT , t + nT ) so that

r(t)

(
H
∑
k∈Z

δkT

)
(t + nT ) = hH (t, t + nT ),

where r(t) = χ[0,T ](t). Together with (10), we note H
∑

k∈Z
δkT ∈ L2(R) and we conclude

‖hH‖2
L2 = ‖H‖2

H S �
T∫

0

∑
n∈Z

∣∣∣∣(H
∑
k∈Z

δkT

)
(t + nT )

∣∣∣∣2 dt =
∥∥∥∥H
∑
k∈Z

δkT

∥∥∥∥2

L2
. �

Example 11. Let T = 1 and take ϕ(t) = χ[0,1)(t). Then V 1(ϕ) is a reproducing kernel Hilbert space and its reproducing kernel
k(s, t) allows {k(·, t +n)}n∈Z to be a frame, in fact, an orthonormal basis for V 1(ϕ) since k(s, t) =∑n∈Z

χ[n,n+1)(s)χ[n,n+1)(t).
Hence, for t ∈ [0,1],

k(s, t + n) =
∑
m∈Z

χ[m,m+1)(s)χ[m,m+1)(t + n) =
∑
m∈Z

χ[m,m+1)(s)δn,m = χ[n,n+1)(s).

We conclude that
∑

k δk identifies H = {H ∈ H S(L2(R)): hH ∈ L2[0,1]⊗ V 1(ϕ)}. For H ∈ H, we observe that hH (t, ·) ∈ V 1(ϕ)

implies κH (·, · − t) ∈ V 1(ϕ) and, hence, κH (x, t) is a step function along the lines x = t + c, c ∈ R.

4. Irregular sampling of Hilbert–Schmidt operators

First, we provide the background on irregular sampling of functions that is needed to develop operator sampling results
based on irregular sampling sets.

4.1. Irregular sampling in Paley–Wiener spaces

Definition 12. Let Λ = {λk}k∈Z ⊆ R, with λk < λk+1, k ∈ Z.

(1) Λ is a set of sampling, also referred to as stable sampling set, for PW([−Ω
2 , Ω

2 ]) if

‖ f ‖2
L2 �

∑
k∈Z

∣∣ f (λk)
∣∣2, f ∈ PW

([−Ω
2 , Ω

2

])
.

(2) Λ is a set of interpolation for PW([−Ω
2 , Ω

2 ]) if the interpolation or moment problem

f (λk) = ck, k ∈ Z,

has a solution in PW([−Ω
2 , Ω

2 ]) for every {ck} ∈ l2(Z).
(3) Λ is uniformly discrete if,

λk+1 − λk � δ > 0, k ∈ Z.

In this case δ is called a separation constant.
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(4) Λ is relatively uniformly discrete if Λ is a finite union of uniformly discrete sets.
(5) The upper and lower Beurling densities are defined, respectively, by

D+(Λ) = lim sup
h→∞

n+(h)

h
and D−(Λ) = lim inf

h→∞
n−(h)

h
,

where for h > 0, n+(h) and n−(h) are the supremum and infimum of the number of points from Λ in [x − h
2 , x + h

2 ),
x ∈ R, respectively. If D+(Λ) = D−(Λ), then we say that Λ has uniform Beurling density D(Λ) = D+(Λ) = D−(Λ).

We recall necessary and sufficient conditions on the Beurling density of a set Λ = {λk}k∈Z for its nonharmonic sequence
to be a frame or a Riesz sequence for L2[−Ω

2 , Ω
2 ] [32].

Theorem 13.

(1) Λ is a set of sampling for PW([−Ω
2 , Ω

2 ]) if and only if {e−2π iλkξ }k∈Z is a frame for L2[−Ω
2 , Ω

2 ]. Moreover, for Λ being relatively

uniformly discrete, a necessary condition for {e−2π iλkξ }k∈Z to be a frame for L2[−Ω
2 , Ω

2 ] is D−(Λ) � Ω , and a sufficient condition
is D−(Λ) > Ω .

(2) Λ is a set of interpolation for PW([−Ω
2 , Ω

2 ]) if and only if {e−2π iλkξ }k∈Z is a Riesz sequence in L2[−Ω
2 , Ω

2 ]. Moreover, for Λ being

uniformly discrete, a necessary condition for {e−2π iλkξ }k∈Z to be a Riesz sequence in L2[−Ω
2 , Ω

2 ] is D+(Λ) � Ω , and a sufficient
condition is D+(Λ) < Ω .

In general, it is highly non-trivial to determine whether a set {e−2π iλkξ }k∈Z is a Riesz basis for L2[−Ω
2 , Ω

2 ]. A famous
affirmative result was given by Kadec [13].

Theorem 14 (Kadec’s 1/4-theorem). Let Λ = {λk}k∈Z ⊂ R. If there is L � 0 such that∣∣∣∣λk − k

Ω

∣∣∣∣� L <
1

4Ω
, k ∈ Z, (11)

then {e−2π iλkξ }k∈Z is a Riesz basis for L2[−Ω
2 , Ω

2 ], and 1
4Ω

is the best possible constant for (11) to hold.

4.2. Irregular sampling in operator Paley–Wiener spaces

Definition 15. A sequence Λ = {λk}k∈Z in R is a set of sampling for an operator class H, if for some {ck}k∈Z ∈ l∞(Z), we
have

∑
k∈Z

ckδλk ∈ S ′
0(R) and

∑
k∈Z

ckδλk identifies H.

We start our discussion of irregular sampling in OPW([0, T ]×[−Ω
2 , Ω

2 ]) with a simple observation.

Proposition 16. If Λ = {λk}k∈Z is a uniformly discrete set of sampling for OPW([0, T ]×[−Ω
2 , Ω

2 ]), then Λ is a set of sampling for

PW([−Ω
2 , Ω

2 ]).

Proof. Note that Λ uniformly discrete implies that there exists C > 0 with
∑ | f (λk)|2 � C‖ f ‖2

L2 for all f ∈ PW([−Ω
2 , Ω

2 ])
[32]. To obtain the reverse inequality for some C̃ > 0, we choose a separation constant δ of Λ with 0 < δ � T . For
each f ∈ PW([−Ω

2 , Ω
2 ]) define H f by κH f (x, y) = f (y) for 0 � x − y < δ, κH f (x, y) = 0 else. As

∑
k∈Z

ckδλk identifies

OPW([0, T ]×[−Ω
2 , Ω

2 ]), we conclude

δ‖ f ‖2
L2 = ‖χ[0,δ]‖2

L2‖ f ‖2
L2 = ‖κH f ‖2

L2 = ‖H f ‖2
H S �

∥∥∥∥H f

∑
k∈Z

ckδλk

∥∥∥∥2

L2

=
∥∥∥∑ ckκH f (x, λk)

∥∥∥2

L2
=
∥∥∥∑ ckχ[λk,λk+δ) f (λk)

∥∥∥2

L2

=
∑∣∣ck f (λk)

∣∣2 ∫ ∣∣χ[λk,λk+δ)(x)
∣∣2 � δ‖c‖2

l∞
∑∣∣ f (λk)

∣∣2, f ∈ PW
([−Ω

2 , Ω
2

])
. (12)

To obtain (12), we utilized the fact that the functions χ[λk,λk+δ) , k ∈ Z, have disjoint support. �
Proposition 16 shows that restrictions on sampling sets for functions generally apply to the operator sampling setup as

well. For example, we conclude that sampling sets for OPW([0, T ]×[−Ω
2 , Ω

2 ]) cannot be finite.
Operator sampling is operator identification with discretely supported identifiers. Consequently, irregular operator sam-

pling for OPW([0, T ]×[−Ω
2 , Ω

2 ]) is a-priori possible only if T Ω � 1 (see, for example, Theorem 3.6 in [19] and Theorem 4.1
in [28]). Sufficiency of the condition T Ω � 1 for operator sampling follows from Theorem 8.
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Theorem 17. T Ω � 1 is a necessary and sufficient condition for the existence of a sampling set for OPW([0, T ]×[−Ω
2 , Ω

2 ]).

In the following, we shall address the question whether a given set Λ is a set of sampling for OPW([0, T ]×[−Ω
2 , Ω

2 ]),
T Ω � 1.

Analogous to Theorem 13, we have the following result.

Theorem 18. If Λ = {λk}k∈Z , λk+1 > λk, is uniformly discrete, then a necessary condition for Λ being a set of sampling for
OPW([0, T ]×[−Ω

2 , Ω
2 ]) is D−(Λ) � Ω , and a sufficient condition is D−(Λ) > Ω and λk+1 − λk � T .

Proof. Necessity of D−(Λ) � Ω follows from Theorem 13(1) combined with Proposition 16.
Now we shall establish the sufficient condition for Λ to be a set of sampling. As Λ is uniformly discrete and D−(Λ) > Ω ,

{e−2π iλkξ }k∈Z is a frame for L2[−Ω
2 , Ω

2 ] by Theorem 13(1). Theorem 13(1) implies also that then Λ is a set of sampling for
PW([−Ω

2 , Ω
2 ]) and for a.e. t ∈ R,∥∥hH (t, ·)∥∥2

L2 �
∑
n∈Z

∣∣hH (t, t + λn)
∣∣2, H ∈ OPW

([0, T ]×[−Ω
2 , Ω

2

])
.

As λk+1 − λk � T , k ∈ Z, we conclude that Λ is a set of sampling for OPW([0, T ]×[−Ω
2 , Ω

2 ]) since for H ∈ OPW([0, T ]×
[−Ω

2 , Ω
2 ]),

‖H‖2
H S = ‖hH‖2

L2 =
T∫

0

∥∥hH (t, ·)∥∥2
dt �

T∫
0

∑
n∈Z

∣∣hH (t, t + λn)
∣∣2 dt

=
T∫

0

∑
n∈Z

∣∣∣∣(H
∑
k∈Z

δλk

)
(t + λn)

∣∣∣∣2 dt �
∥∥∥∥H
∑
k∈Z

δλk

∥∥∥∥2

L2
. �

In the remainder of this section, we shall discuss the separation condition (λk+1 − λk) � T , k ∈ Z, on the sam-
pling sequence {λk}k∈Z for OPW([0, T ]×[−Ω

2 , Ω
2 ]). This condition rules out aliasing in the sense that the summands in∑

n∈Z
hH (· − λn, ·) =∑n∈Z

κH (·, λn) have non-overlapping support. Consequently, the sufficient condition on Λ = {λk}k∈Z

for being a set of sampling for OPW([0, T ]×[−Ω
2 , Ω

2 ]) given in Theorem 18 implies

Ω < D−(Λ) � D+(Λ) � 1

T

so that T Ω < 1. Theorem 17 shows that this is only a mild additional restriction on operator Paley–Wiener spaces to allow
for irregular operator sampling.

Corollary 19. If Λ = {λk}k∈Z, λk+1 > λk, satisfies |λk − kT | � L < T
4 for some L � 0 and λk+1 − λk � T , k ∈ Z, then Λ is a set of

sampling for OPW([0, T ]×[−Ω
2 , Ω

2 ]), T Ω < 1.

Proof. Since |λk − kT | � L < T
4 , {e−2π iλkξ } is a Riesz basis for L2[− 1

2T , 1
2T ] by Theorem 14. If T Ω < 1, the result follows

directly from Theorem 18. �
Note that the hypothesis on Λ in Corollary 19 is satisfied if and only if λk = kT + εk with

− T

4
< −L � · · · � ε−2 � ε−1 � ε0 � ε1 � ε2 � · · · � L <

T

4
.

Theorem 20. Let Λ = {λk}k∈Z , λk+1 > λk, be a set of sampling for OPW([0, T ]×[−Ω
2 , Ω

2 ]) and let {e−2π iλkξ }k∈Z be a Riesz basis for

L2[−Ω
2 , Ω

2 ], then λk+1 − λk � T , k ∈ Z.

Proof. It is easy to see that if {e−2π iλkξ }k∈Z is a Riesz basis for L2[−Ω
2 , Ω

2 ] and
∑

k∈Z
ckδλk is an identifier of

OPW([0, T ]×[−Ω
2 , Ω

2 ]), then ck �= 0 for all k ∈ Z. In fact, if ck0 = 0 for some k0 ∈ Z, then
∑

k �=k0
ckδλk also identifies

OPW([0, T ]×[−Ω
2 , Ω

2 ]) so that {e−2π iλkξ }k �=k0 remains a frame for L2[−Ω
2 , Ω

2 ]. But this is a contradiction as a Riesz ba-
sis ceases to form a frame when we remove any element [5].

Assume λl+1 − λl < T for some l. For such l, set

κH (x, λk) = 0 if k �= l, l + 1
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and

κH (x, λl) =
{

cl+1 if λl+1 � x � λl + T ,

0 otherwise,

and

κH (x, λl+1) =
{−cl if λl+1 � x � λl + T ,

0 otherwise.

The freedom of choice of values for κH (x, λk) is justified by Theorem 13(2). Then H
∑

k∈Z
ckδλk (x) =∑k∈Z

ckκH (x, λk) = 0
for all x ∈ R, but as cl, cl+1 �= 0, we have κH �= 0 and therefore H �= 0. �
Example 21. Theorem 20 implies that {λn}n∈Z = {2n}n∈Z ∪ {2n + α}n∈Z with 0 < α < 1 is not a set of sampling for
OPW([0,1]×[− 1

2 , 1
2 ]).

The condition (λk+1 − λk) � T , k ∈ Z is not necessary for operator sampling of OPW([0, T ]×[−Ω
2 , Ω

2 ]) if {e−2π iλkξ }k∈Z is
not a Riesz basis but a frame for L2[−Ω

2 , Ω
2 ].

Example 22. The tempered distribution
∑

k∈Z
(−1)kδ k

2
identifies OPW([0,1] × [− 1

2 , 1
2 ]) [28].

To illustrate the rigidity of operator sampling in comparison to function sampling, we add the following simple example.

Example 23. Let Λr = {λk}k∈Z be given by λk = k for k �= 0 and λ0 = r ∈ R. The set Λr is a set of sampling for PW([− 1
2 , 1

2 ]) if
and only if r /∈ Z \ {0}. To see this, note that since {e2π ikξ }k∈Z is an orthonormal basis for L2[− 1

2 , 1
2 ] and since for r /∈ Z \ {0}

we have 〈e2π irξ , e2π i0ξ 〉 �= 0, we conclude that {e2π ikξ }k �=0 ∪ {e2π irξ }, r /∈ Z \ {0}, is a Riesz basis.
On the other hand, applying Theorem 20 we obtain Λr = {λk}k∈Z is a set of sampling for OPW([0,1]×[− 1

2 , 1
2 ]) if and

only if r = 0.

4.3. An operator version of Kramer’s Lemma

Kramer’s Lemma plays a crucial role in the proofs of a number of important sampling theorems. For example, it allows
for sampling series expansions for functions which are integral transforms of type other than the Fourier one. For exam-
ple, Bessel–Hankel, Legendre, Jacobi, Laguerre, Gegenbauer, Chebyschev, prolate spheroidal, and Hermite transforms can be
considered, where each transform is defined as an integral transform whose kernel is its special function [10,24,35]. In
particular, if a function on R2 has a circular symmetry, then a multi-dimensional Fourier transform can be reduced to a
one-dimensional Bessel–Hankel transform [25].

After recalling Kramer’s Lemma below, we shall state and prove an operator sampling version of Kramer’s Lemma, The-
orem 25, and point out restrictions in the applicability of Kramer’s method in operator sampling (Remark 26).

Theorem 24 (Kramer’s Lemma). Let I ⊆ R be a bounded interval and k(·, t) ∈ L2(I) for each fixed t in D ⊆ R. If there is a sampling
sequence {tn}n∈Z in D such that {k(ξ, tn)}n∈Z forms a frame for L2(I), then for any f (t) = 〈F ,k(·, t)〉L2(I) , F ∈ L2(I), we have

f (t) =
∑
n∈Z

f (tn)Sn(t),

where the reconstruction functions Sn are given by

Sn(t) =
∫
I

k̃n(ξ)k(ξ, t)dξ,

with {k̃n(ξ)}n∈Z being a dual frame of {k(ξ, tn)}n∈Z .

The original Kramer’s Lemma assumed that {k(ξ, tn)}n∈Z is an orthonormal basis for L2(I) [10,20]. However, a close
look at the proof of Kramer’s Lemma in [10] shows that the result extends to the case where {k(ξ, tn)}n∈Z forms a frame.
We remark that the classical sampling theorem addressing f in PW([− 1

2 , 1
2 ]) is given by Kramer’s Lemma if we take

k(ξ, t) = e2π iξt, F = f̂ and use the fact that {e2π inξ }n∈Z is an orthonormal basis for L2[− 1
2 , 1

2 ].
Let I ⊆ R be bounded. For

K : L2(I) −→ L2(R), F �−→ 〈
F (·),k(x, ·)〉 2 , (13)
L (I)
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bounded, set

Hk([0,d]×I
)= {H ∈ H S

(
L2(R)

)
: hH (t, x) = 〈ζH (t, ·),k(x, ·)〉L2 , ζH ∈ L2([0,d]×I

)}
.

Clearly, for k(x, ν) = e−2π iνx we have Hk([0,d]×I) = OPW([0,d]×I).

Theorem 25. Let H ∈ Hk([0,d] × I), d > 0, I in R bounded. If there is a set {yn}n∈Z in R, such that {k(t + yn, ν)}n∈Z forms a frame
for L2(I) for every t ∈ [0,d], and d′ = inf(yn+1 − yn) � d, then exists c > 0 with∥∥∥∥H

(∑
k∈Z

δyk

)∥∥∥∥
L2

� c‖H‖H S , H ∈ Hk([0,d] × I
)
. (14)

If the map K in (13) is bounded below, then∥∥∥∥H

(∑
k∈Z

δyk

)∥∥∥∥
L2

� ‖H‖H S , H ∈ Hk([0,d] × I
)
, (15)

and operator reconstruction is possible as

hH (t, x) = r(t)
∑
n∈Z

(
H
∑
k∈Z

δyk

)
(t + yn)φn(t, x),

where φn(t, x) is given by

φn(t, x) =
∫
I

k∗
n(t, ν)k(x, ν)dν

with {k∗
n(t, ν)}n∈Z being a dual frame of {k(t + yn, ν)}n∈Z for each t and r ≡ 1 on [0,d] with supp r ⊆ [d − d′,d′].

Proof. As infk(yk+1 − yk) = d′ � d we have

r(t)

(
H
∑
k∈Z

δyk

)
(t + yn) = r(t)

∑
k∈Z

hH (t + yn − yk, t + yn) = hH (t, t + yn), t ∈ R,

where r ≡ 1 on [0,d] and supp r ⊆ [d − d′,d′]. Consequently,

‖ζH‖2
L2 =

∫ ∥∥ζH (t, · )∥∥2
L2 dt �

∫ ∥∥{〈ζH (t, ·),k(t + yn, ·)
〉
L2

}∥∥2
l2 dt

=
∫ ∥∥{hH (t, t + yn)

}∥∥2
l2 dt =

∫ ∑
n∈Z

∣∣hH (t, t + yn)
∣∣2 dt

=
∫ ∑

n∈Z

∣∣∣∣r(t − yn)

(
H
∑
k∈Z

δyk

)
(t)

∣∣∣∣2 dt =
∑
n∈Z

yn+1∫
yn

∣∣∣∣H∑
k∈Z

δyk (t)

∣∣∣∣2 dt

=
∫ ∣∣∣∣H∑

k∈Z

δyk (t)

∣∣∣∣2 dt =
∥∥∥∥H
∑
k∈Z

δyk

∥∥∥∥2

, H ∈ Hk([0,d]×I
)
.

We used the fact that r(t − yn)(H
∑

k∈Z
δyk )(t) = (H

∑
k∈Z

δyk )(t) for t ∈ [yn, yn + d] and r(t − yn)(H
∑

k∈Z
δyk )(t) = 0 for

t ∈ [yn + d, yn+1), n ∈ Z.
As ‖H‖H S = ‖hH‖L2 and hH (t, ·) = KζH (t, ·), Eqs. (14) and (15) follow from the fact that K is bounded and the hypothesis

that K is bounded below, respectively.
Moreover, we have, for ν ∈ I ,

ζH (t, ν) =
∑
n∈Z

〈
ζH (t, ·),k(t + yn, ·)

〉
L2k∗

n(t, ν) =
∑
n∈Z

hH (t, t + yn)k
∗
n(t, ν),

where {k∗
n(t, ν)}n∈Z is a dual frame of {k(t + yn, ν)}n∈Z for each t . Multiplying k(x, ν) and integrating with respect to ν on

both sides, we have for fixed t ∈ [0,d]
hH (t, x) =

∑
n∈Z

hH (t, t + yn)φn(t, x), x ∈ R,

where φn(t, x) = ∫ k∗
n(t, ν)k(x, ν)dν . �
I
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Note that a set of sampling {yn}n∈Z satisfying the hypotheses of Theorem 25 is uniformly discrete with separation
constant d′ greater than or equal to d. On the other hand, the condition that {k(t + yn, ν)}n∈Z forms a frame for L2(I)
indicates that the sampling points should not be too sparse.

Remark 26. Unlike Kramer’s Lemma for functions, we do not have any explicit example for operator sampling other than
the OPW([0,d]×I) case. Sampling theorems based on various kinds of orthogonal polynomials generally do not satisfy all
hypotheses in Theorem 25. For instance, for the Bessel–Hankel transform, we have k(x, ν) = √

xν Jn(xν) where Jn is the
Bessel function of the first kind of order n. Taking λk as the k-th positive root of Jn(x), one can, in fact, obtain a sampling
expansion induced from the Bessel–Hankel transform [10]. However, the kernel k(x, ν) = √

xν Jn(xν) does not allow for
{k(t + λk, ν)}k∈Z being a frame for each t .

As we saw already in the proof of Theorem 8, the Fourier kernel k(x, ν) = e2π ixν satisfies the hypotheses in Theorem 25
as, for example, {e2π itνe−2π inν}n∈Z forms an orthonormal basis for L2[− 1

2 , 1
2 ] for all t ∈ R. In fact, whenever k(x, ν) satisfies

k(t + x, ν) = m(t, ν)k(x, ν) with 0 < c � |m(t, ν)| � C < ∞, t ∈ [0,d], ν ∈ I , then {k(yn, ν)}n∈Z being a frame for L2(I) implies
that {k(t + yn, ν)}n∈Z is also a frame for L2(I) for all t ∈ [0,d]. This observation applies to, for example, the Hilbert transform
kernel k(x, ν) = −i sgn(ν) e−2π ixν . But again, substantial examples seem rare.

5. Multi-channel sampling for Hilbert–Schmidt operators

In classical multi-channel sampling, a signal is reconstructed using discrete values from the outputs of N different time-
invariant operators applied to a single input signal. Generally, each of the N outputs is sampled at 1

N -th of the Nyquist–
Landau rate of the input signal. For example, when the signal’s bandwidth is Ω Hz, then we should collect at least Ω

samples per second. But if we design N channel filters appropriately, then it suffices to obtain Ω/N samples per second
from each channel and combine the samples in order to reconstruct the signal. This allows us to reduce sampling rate
requirements on sampling hardware at the cost of employing multiple samplers.

A number of important theorems, for example, on periodic nonuniform sampling, on derivative sampling and on samples
of Hilbert transforms can be explained in the framework of multi-channel sampling [4,10]. In [12], multi-channel sampling
has been developed for abstract Hilbert spaces, allowing each channel output to be sampled at different, irregular points.

In Sections 3 and 4, it has been shown that a slowly time-varying/underspread operator is identifiable by a single channel
output while in [19,27] it is shown that an overspread operator is not identifiable in this sense. However, in this section we
shall show that overspread operators may be recoverable from multiple channel outputs. In addition, we seek to reduce the
rate at which delta impulses are produced for channel identification.

Throughout this section, we shall consider Hilbert–Schmidt operators whose Kohn–Nirenberg symbols are bandlimited
to rectangular domains.

Theorem 27. For M, N ∈ N, OPW([0, N]×[− M
2 , M

2 ]) permits multi-channel operator sampling as

‖H‖2
H S = 1

M2N

MN−1∑
j=0

∥∥∥∥H

(∑
n∈Z

e2π i jn/MNδ n
M

)∥∥∥∥2

, H ∈ OPW
([0, N]×[− M

2 , M
2

])
.

Proof. Suppose that ηH ∈ L2([0, N]×[− M
2 , M

2 ]) for some M, N ∈ N. Consider an orthonormal basis { 1√
M

e−2π i(t+ n
M )ν}n∈Z for

L2[− M
2 , M

2 ], t ∈ [0, N]. Then

ηH (t, ν) =
∑
n∈Z

〈
ηH (t, ν),

1√
M

e−2π i(t+ n
M )ν

〉
1√
M

e−2π i(t+ n
M )ν

=
∑
n∈Z

hH

(
t, t + n

M

)
1

M
e−2π i(t+ n

M )ν , ν ∈ [− M
2 , M

2

]
,

and

hH (t, x) =
∑
n∈Z

hH

(
t, t + n

M

)
sinc M

(
x − t − n

M

)
, x ∈ R, a.e. t ∈ [0, N].

Since {√M sinc M(· − t − n
M )}n∈Z is an orthonormal basis for PW([− M

2 , M
2 ]), Parseval’s identity gives

∥∥hH (t, ·)∥∥2
2 = 1

M

∑
n∈Z

∣∣∣∣hH

(
t, t + n

M

)∣∣∣∣2, t ∈ [0, N].

Hence, we have
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‖hH‖2
L2(R2)

=
N∫

0

∥∥hH (t, ·)∥∥2
L2(R)

dt = 1

M

N∫
0

∑
n∈Z

∣∣∣∣hH

(
t, t + n

M

)∣∣∣∣2 dt

= 1

M

MN−1∑
r=0

r+1
M∫

r
M

∑
n∈Z

∣∣∣∣hH

(
t, t + n

M

)∣∣∣∣2 dt

= 1

M

1
M∫

0

MN−1∑
r=0

∑
n∈Z

∣∣∣∣hH

(
t + r

M
, t + r

M
+ n

M

)∣∣∣∣2 dt

= 1

M

1
M∫

0

MN−1∑
r=0

∑
n∈Z

∣∣∣∣hH

(
t + r

M
, t + n

M

)∣∣∣∣2 dt.

Since (H
∑

n
1√
MN

δ n
M

)(t + k
M ) =∑n

1√
MN

hH (t + k
M − n

M , t + k
M ), for fixed t ∈ [0, 1

M ], we have

r(t)
∑
n∈Z

1√
MN

hH

(
t + k

M
− n

M
, t + k

M

)
= 1√

MN

MN−1∑
r=0

hH

(
t + r

M
, t + k

M

)
,

where r(t) = χ[0, 1
M ](t). Similarly, consider (H

∑
n

1√
MN

ωn
j δ n

M
)(x) where ω j = e2π i j/MN , j = 0,1, . . . , MN − 1. Then

(
H
∑

n

1√
MN

ωn
j δ n

M

)(
t + k

M

)
=
∑

n

ωn
j√

MN
hH

(
t + k

M
− n

M
, t + k

M

)
.

For fixed t ∈ [0, 1
M ],

r(t)
∑
n∈Z

ωn
j√

MN
hH

(
t + k

M
− n

M
, t + k

M

)
=

MN−1∑
r=0

ωk−r
j√
MN

hH

(
t + r

M
, t + k

M

)
.

Consider the system of linear equations

r(t)

⎡⎢⎢⎢⎢⎢⎢⎣

(H
∑

n
1√
MN

δ n
M

)(t + k
M )

(H
∑

n
ωn

1√
MN

δ n
M

)(t + k
M )

...

(H
∑

n
ωn

MN−1√
MN

δ n
M

)(t + k
M )

⎤⎥⎥⎥⎥⎥⎥⎦= Ak

⎡⎢⎢⎢⎢⎣
hH (t, t + k

M )

hH (t + 1
M , t + k

M )

...

hH (t + MN−1
M , t + k

M )

⎤⎥⎥⎥⎥⎦ ,

where all matrices Ak are unitary MN × MN DFT matrices with entries given by (Ak) j,l = 1√
MN

e2π i( j−1)(k−(l−1))/MN . Since

all Ak ’s are unitary, we have

∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎣

‖{(H
∑

n
1√
MN

δ n
M

)(t+ k
M )}k‖l2

‖{(H
∑

n
ωn

1√
MN

δ n
M

)(t+ k
M )}k‖l2

...

‖{(H
∑

n
ωn

MN−1√
MN

δ n
M

)(t+ k
M )}k‖l2

⎤⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎝
‖{hH (t, t+ k

M )}k‖l2

‖{hH (t+ 1
M , t+ k

M )}k‖l2

...

‖{hH (t+ MN−1
M , t+ k

M )}k‖l2

⎞⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥∥

2

,

where ‖ · ‖ denotes the L2[0, 1 ]MN norm. Therefore
M
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‖hH‖2 = 1

M

1
M∫

0

∑
k∈Z

MN−1∑
j=0

∣∣∣∣(H
∑
n∈Z

ωn
j√

MN
δ n

M

)(
t + k

M

)∣∣∣∣2 dt

= 1

M

∫
R

MN−1∑
j=0

∣∣∣∣(H
∑
n∈Z

ωn
j√

MN
δ n

M

)
(t)

∣∣∣∣2 dt

= 1

M2N

MN−1∑
j=0

∥∥∥∥H
∑
n∈Z

ωn
j δ n

M

∥∥∥∥2

L2(R)

. �

Clearly, the matrices Ak can be replaced by appropriate sequences of matrices whose norms are bounded above and
away from zero.

Theorem 28. Let M, N ∈ N and {c j,n}MN
j=1,n∈Z

bounded. Let Ak, k ∈ Z, be invertible with ‖A−1
k ‖ � C < ∞ where (Ak) j,l=1,...,MN =

c j,k−l+1 . For f j =∑n∈Z
c j,nδ n

M
, 1 � j � MN, we have

‖H‖2
H S �

MN∑
j=1

‖H f j‖2
L2 , H ∈ OPW

([0, N]×[− M
2 , M

2

])
.

The assumption in Theorem 28 is satisfied if for all j, {c j,n}n∈Z is MN-periodic and A j,0 is invertible with ‖A−1
j,0‖ also

uniformly bounded. The proof of Theorem 28 closely resembles the proof of Theorem 27—norm equalities are replaced by
norm equivalences—and is therefore omitted.

Now we consider periodic nonuniform sampling as first proposed by Yen [34]. We first recall a periodic nonuniform
sampling theorem for functions in PW([−Ω

2 , Ω
2 ]) which is stated and proven in [34].

Theorem 29. There exists a Riesz basis {S j(t − nN
Ω

)}N
j=1,n∈Z

for PW([−Ω
2 , Ω

2 ]) such that

f (t) =
N∑

j=1

∑
n∈Z

f

(
nN

Ω
+ α j

)
S j

(
t − nN

Ω

)
, f ∈ P W

([−Ω
2 , Ω

2

])
,

where 0 � α j < N
Ω

, 1 � j � N, and αi �= α j for i �= j.

We show that OPW([0, N]×[− M
2 , M

2 ]) is identifiable by MN identifiers which are given by delta-trains whose supports
are periodically nonuniformly distributed.

Theorem 30. For M, N ∈ N, and 0 � α1 < α2 < · · · < αMN < N, we have

‖H‖2
H S �

MN∑
j=1

∥∥∥∥H

(∑
n∈Z

δnN+α j

)∥∥∥∥2

, H ∈ OPW
([0, N]×[− M

2 , M
2

])
.

Proof. If we apply Theorem 29 to hH (t, ·) ∈ PW([− M
2 , M

2 ]) with MN channels, then we obtain

hH (t, x) =
MN∑
j=1

∑
n∈Z

hH (t, t + nN + α j)ϕ j(x − t − nN), x ∈ R, a.e. t ∈ [0, N],

and ∥∥hH (t, ·)∥∥2 �
MN∑
j=1

∑
n∈Z

∣∣hH (t, t + nN + α j)
∣∣2, a.e. t ∈ [0, N],

where {ϕ j(· − t − nN)}MN
j=1,n∈Z

is a Riesz basis for PW([− M
2 , M

2 ]) for each t ∈ [0, N]. Therefore, we have

‖H‖2
H S = ‖hH‖2

L2 �
N∫ MN∑

j=1

∑
n∈Z

∣∣hH (t, t + nN + α j)
∣∣2 dt
0
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=
MN∑
j=1

N∫
0

∑
n∈Z

∣∣∣∣H(∑
k∈Z

δkN+α j

)
(t + nN + α j)

∣∣∣∣2 dt

=
MN∑
j=1

∥∥∥∥H

(∑
k∈Z

δkN+α j

)∥∥∥∥2

L2
,

that is, {∑k∈Z
δkN+α j }MN

j=1 identifies OPW([0, N]×[− M
2 , M

2 ]). �
Remark 31. Note that as in the multichannel sampling theory for functions, Theorem 30 can be applied to reduce the rate
of impulse transmission. For example, as OPW([0,1]×[− 1

2 , 1
2 ]) ⊆ OPW([0, N]×[− 1

2 , 1
2 ]), we can identify any operator in

OPW([0,1]×[− 1
2 , 1

2 ]) by its action on the tempered distributions
∑

n∈Z
δnN+ jα , 0 � α � 1, j = 0, . . . , N − 1, each of which

has impulse rate 1/N .

Another important multi-channel sampling concept can be applied to operator sampling, namely, derivative sampling
(see Section 3.2 in [11]). We apply a multi-channel sampling formula consisting of samples of f and its MN − 1 derivatives
[21,22].

Theorem 32. For M, N ∈ N, we have

‖H‖2
H S �

MN−1∑
j=0

∥∥∥∥ j∑
r=0

(
j

r

)
(−1)r

(
H
∑

k

δ
(r)
kN

)( j−r)∥∥∥∥2

, H ∈ OPW
([0, N]×[− M

2 , M
2

])
.

Here, f (r) denotes the r-th derivative of f in the distributional sense.

Proof. For almost every t ∈ [0, N], we can apply the multi-channel derivative sampling theorem with MN-channels to
hH (t, ·) ∈ PW([− M

2 , M
2 ]). That is, we use the formula

f (t) =
∑
n∈Z

f (nNT )S0,n(t) + · · · + f (N−1)(nNT )SN−1,n(t), f ∈ P W
([− M

2 , M
2

])
,

where T Ω = 1 [11]. This leads, for a.e. t , to the well-defined and L2-convergent series

hH (t, x) =
MN−1∑

j=0

∑
n∈Z

∂ j

∂x j
hH (t, x)

∣∣
x=t+nNϕ j(x − t − nN).

Moreover, we have

∥∥hH (t, ·)∥∥2 �
MN−1∑

j=0

∑
n∈Z

∣∣∣∣ ∂ j

∂x j
hH (t, x)

∣∣
x=t+nN

∣∣∣∣2, a.e. t ∈ [0, N],

as {ϕ j(x − t − nN)}MN−1
j=0,n∈Z

is a Riesz basis for PW([− M
2 , M

2 ]) for each fixed t ∈ [0, N] [11]. Note that an explicit form of the
reconstruction functions ϕ j is given in [11].

Let H j ∈ H S(L2(R)) be the operator defined through the j-th derivative of hH (t, ·), that is, formally, we have

H j f (x) =
∫

∂ j

∂x j
hH (t, x) f (x − t)dt.

Since supp ∂ j

∂x j hH (·, x) ⊆ supp hH (·, x), we have, similar to (8),

χ[0,N](t)
(

H j

∑
k∈Z

δkN

)
(t + nN) = ∂ j

∂x j
hH (t, x)

∣∣
x=t+nN ,

so that

‖hH‖2 =
N∫

0

∥∥hH (t, ·)∥∥2
dt �

N∫
0

MN−1∑
j=0

∑
n∈Z

∣∣∣∣(H j

∑
k∈Z

δkN

)
(t + nN)

∣∣∣∣2 dt =
MN−1∑

j=0

∥∥∥∥H j

∑
k∈Z

δkN

∥∥∥∥2

. (16)

By Leibniz rule, we have, formally,
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(H f )′(x) = d

dx

∫
hH (t, x) f (x − t)dt

=
∫

∂

∂x
hH (t, x) f (x − t)dt +

∫
hH (t, x)

∂

∂x
f (x − t)dt

=
∫

∂

∂x
hH (t, x) f (x − t)dt +

∫
hH (t, x) f ′(x − t)dt

= H1 f (x) + H
(

f ′)(x),

so that H1 f = (H f )′ − H f ′ . Applying this procedure to (H f )′′ gives H2 f = (H f )′′ −2(H f ′)′ + H f ′′, and, iterating this further,
we obtain the Leibniz’ formula

H j f (x) =
j∑

r=0

(
j

r

)
(−1)r(H f (r))( j−r)

. (17)

Both sides of (17) are well defined for f =∑ δkN and equality follows from standard density arguments. Inserting the
right-hand side of (17) into the right-hand side of (16) completes the proof. �

We conclude this section by presenting two explicit multi-channel reconstruction formulas for operators.

Example 33. Consider the Riesz bases {e−2π i(t+2n)ν}n∈Z ∪ {−2π iνe−2π i(t+2n)ν}n∈Z , t ∈ R, of L2[−1/2,1/2], as well as their
Riesz basis duals given by {2(1 − 2|ν|)e−2π i(t+2n)ν}n∈Z ∪ { 2i

π sgn(ν)e−2π i(t+2n)ν}n∈Z [10]. We obtain

ηH (t, ν) =
∑

n

〈
ηH (t, ·), e−2π i(t+2n)·〉2(1 − 2|ν|)e−2π i(t+2n)ν

+
∑

n

〈
ηH (t, ·),−2π i · e−2π i(t+2n)·〉2i

π
sgn(ν)e−2π i(t+2n)ν , ν ∈ [− 1

2 , 1
2

]
.

Taking the inverse Fourier transform with respect to the variable ν , we have

hH (t, x) =
∑

n

hH (t, t + 2n)Sn(t, x) + ∂

∂x
hH (t, x)

∣∣
x=t+2n Tn(t, x), x ∈ R, t ∈ [0,2],

where

Sn(t, x) = sinc2 1

2
(x − t − 2n)

and

Tn(t, x) = 2

π
sinc

1

2
(x − t − 2n) sin

π

2
(x − t − 2n).

We give a second reconstruction formula for the operator class OPW([0,2]×[− 1
2 , 1

2 ]).

Example 34. Let H ∈ OPW([0,2]×[− 1
2 , 1

2 ]). Then for 0 < α < 1,

hH (t, x) =
∑
n∈Z

(
H
∑
k∈Z

δ2k

)
(t + 2n)S1(x − t − 2n) +

(
H
∑
k∈Z

δ2k+α

)
(t + 2n + α)S2(x − t − 2n − α),

where the reconstruction functions are

S1(x) = 2

eπ iα − 1
F −1(eπ iαχ[− 1

2 ,0)
(ν) − χ[0, 1

2 ](ν)
)
(x)

and

S2(x) = 2

eπ iα − 1
F −1(−χ[− 1

2 ,0)
(ν) + eπ iαχ[0, 1

2 ](ν)
)
(x).

Appendix A

To prove Proposition 7, we use some advanced concepts from time–frequency analysis. See [9] for a detailed introduction
to the underlying theory. In the following S(Rd) denotes the class of Schwartz class functions and S ′(Rd) its dual of
tempered distributions.
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Definition 35. For 1 � p,q � ∞, the modulation space M p,q(Rd) is defined by

M p,q(Rd)= { f ∈ S ′(Rd): Vg f (t, ν) ∈ Lpq(R2d)}, (18)

where Vg f (t, ν) is the short-time Fourier transform of f with respect to the Gaussian g(x) = e−π‖x‖2
. The norm on

M p,q(Rd) is given by

‖ f ‖M p,q = ‖Vg f ‖L p,q =
(∫ (∫ ∣∣Vg f (t, ν)

∣∣p dt

) q
p

dν

) 1
q

with the usual adjustments if p = ∞ or q = ∞.

Observe that M1,1(Rd) = S0(Rd), M2,2(Rd) = L2(Rd), and M∞,∞(Rd) = S ′
0(R

d) with equivalent norms. Similarly,

M p,q(Rd)′ = M p′,q′
(Rd) where 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1, 1 � p,q < ∞. Moreover, replacing g(x) = e−π‖x‖2

in (18) by

any non-trivial function ϕ ∈ S0(Rd) does not change the defined modulation space and leads to a norm equivalent to the
norm induced by choosing g(x) = e−π‖x‖2

[9].

Lemma 36. For f ∈ S ′
0(R

d) = M∞,∞(Rd) and g ∈ L2(Rd) = M2,2(Rd) we have Fs V f g ∈ M2,∞(R2d). Moreover, there exists C > 0
with

‖Fs V f g‖M2,∞ � C ‖ f ‖S ′
0
‖g‖L2 . (19)

Proof. Assume first g, f ∈ S0(Rd), the general case follows from the density of S0(Rd) in L2(Rd), respectively the weak-∗
density of S0(Rd) in S ′

0(R
d) [9].

The formal computation

G(x, ξ) = Fs V f g(x, ξ) =
∫ ∫ ∫

g
(
x′)e−2π ix′ν f̄

(
x′ − t

)
dx′ e−2π i(tξ−xν) dν dt

=
∫ ∫ ∫

g
(
x′)e−2π i(x′−x)ν f̄

(
x′ − t

)
dν dx′ e−2π itξ dt

=
∫

g(x) f̄ (x − t)e−2π itξ dt = g(x) f̂ (ξ)e−2π ixξ

is easily justified by considering G as a distribution acting on S(R2d).
Let now ϕ ∈ C∞

c (Rd) be real valued and set Φ(x, ξ) = e−2π ixξϕ(x)ϕ(ξ) for (x, ξ) ∈ R2d . Then Φ ∈ S(R2d) ⊆ S0(R2d). We
compute

VΦ G(x, ξ, t, ν) =
∫ ∫

g
(
x′) ¯̂f (ξ ′)e−2π ix′ξ ′

e−2π i(x′ν−tξ ′)e2π i(x′−x)(ξ ′−ξ)ϕ
(
x′ − x

)
ϕ
(
ξ ′ − ξ

)
dξ ′ dx′

=
∫ ∫

g
(
x′) ¯̂f (ξ ′)e2π i(−x′ξ ′−x′ν+tξ ′+x′ξ ′−xξ ′−x′ξ+xξ)ϕ

(
x′ − x

)
ϕ
(
ξ ′ − ξ

)
dξ ′ dx′

= e2π ixξ
∫ ¯̂f (ξ ′)e2π i(t−x)ξ ′

ϕ
(
ξ ′ − ξ

)
dξ ′
∫

g
(
x′)e−2π ix′(ν+ξ)ϕ

(
x′ − x

)
dx′

= e2π ixξ 〈Mt−xTξϕ, f̂ 〉 Vϕ g(x, ν + ξ)

= e2π ixξ e2π i(t−x)ξ 〈Mξ Tt−xϕ̌, f 〉Vϕ g(x, ν + ξ)

= e2π itξ V ϕ̌ f (t − x, ξ)Vϕ g(x, ν + ξ)

and, hence,

‖VΦ G‖2
M2,∞ = sup

t,ν

∫ ∫ ∣∣V ϕ̌ f (t − x, ξ)Vϕ g(x, ν + ξ)
∣∣2 dx dξ

= sup
t,ν

∫ ∫ ∣∣V ϕ̌ f (x, ξ)
∣∣2∣∣Vϕ g(t − x, ν + ξ)

∣∣2 dx dξ

�
∥∥(V ϕ̌ f )2

∥∥
L∞ sup

t,ν

∫ ∫ ∣∣Vϕ g(t − x, ν + ξ)
∣∣2 dx dξ

= ∥∥(V ϕ̌ f )2
∥∥

L∞
∥∥(Vϕ g)2

∥∥
L1 = ‖V ϕ̌ f ‖2

L∞‖Vϕ g‖2
L2 � C‖ f ‖2

S ′
0
‖g‖2

L2 ,

where the constant C is obtained from ‖Vϕ f ‖L2 � ‖Vg f ‖L2 � ‖ f ‖L2 and ‖V ϕ̌ f ‖L∞ � ‖Vg f ‖L∞ � ‖ f ‖S ′ . �

0
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Proof of Proposition 7. A simple computation shows that for f , g ∈ S0(Rd) and H ∈ H S(L2(Rd)) we have

〈H f , g〉 = 〈ηH , V f g〉 = 〈σH , Fs V f g〉.
Note that S compact implies

‖σH‖L2 � ‖σH‖M2,1 , H ∈ OPW(S),

[15], and we conclude that

‖H f ‖L2 = sup
‖g‖L2 =1

∣∣〈H f , g〉∣∣= sup
‖g‖L2 =1

∣∣〈σH , Fs V f g〉∣∣� sup
‖g‖L2 =1

‖σH‖M2,1‖Fs V f g‖M2,∞

� C sup
‖g‖L2 =1

‖σH‖L2‖ f ‖S ′
0
‖g‖L2 � C̃‖H‖H S‖ f ‖S ′

0
. �
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