217 research outputs found

    On stochastic stabilization in sample-and-hold sense

    Full text link
    Sample-and-hold refers to implementation of control policies in a digital mode, in which the dynamical system is treated continuous, whereas the control actions are held constant in predefined time steps. In such a setup, special attention should be paid to the sample-to-sample behavior of the involved Lyapunov function. This paper extends on the stochastic stability results specifically to address for the sample-and-hold mode. We show that if a Markov policy stabilizes the system in a suitable sense, then it also practically stabilizes it in the sample-and-hold sense. This establishes a bridge from an idealized continuous application of the policy to its digital implementation. The central result applies to dynamical systems described by stochastic differential equations driven by the standard Brownian motion. Generalizations are discussed, including the case of non-smooth Lyapunov functions for systems driven by bounded noise. A brief overview of bounded noise models is given. An experimental study of mobile robot parking under influence of different noise levels and sampling times is provided

    Finite-time stabilization of homogeneous non-Lipschitz systems

    Get PDF
    This paper focuses on the problem of finite-time stabilization of homogeneous, non-Lipschitz systems with dilations. A key contribution of this paper is the design of a virtual recursive Holder, non-Lipschitz state feedback, which renders the non-Lipschitz systems in the special case dominated by a lower-triangular nonlinear system finite-time stable. The proof is based on a recursive design algorithm developed recently to construct the virtual Holder continuous, finite-time stabilizer as well as a C1 positive definite and proper Lyapunov function that guarantees finite-time stability of the non-Lipschitz nonlinear systems

    Global Finite-Time Stabilization for a Class of Uncertain High-Order Nonlinear Systems

    Get PDF
    This paper addresses the problem of global finite-time stabilization by state feedback for a class of high-order nonlinear systems under weaker condition. By using the methods of adding a power integrator, a continuous state feedback controller is successfully constructed to guarantee the global finite-time stability of the resulting closed-loop system. A simulation example is provided to illustrate the effectiveness of the proposed approach

    Sensitivity reduction by stable controllers for MIMO infinite dimensional systems via the tangential nevanlinna-pick interpolation

    Get PDF
    Cataloged from PDF version of article.We study the problem of finding a stable stabilizing controller that satisfies a desired sensitivity level for an MIMO infinite dimensional system. The systems we consider have finitely many simple transmission zeros in (C) over bar (+), but they are allowed to possess infinitely many poles in C+. We compute both upper and lower bounds of the minimum sensitivity achievable by a stable controller via the tangential Nevanlinna-Pick interpolation. We also obtain stable controllers attaining such an upper bound. To illustrate the results, we discuss a repetitive control system as an application of the proposed method

    On the control of complementary-slackness juggling mechanical systems

    Get PDF
    International audienceThis paper studies the feedback control of a class of complementary-slackness hybrid mechanical systems. Roughly, the systems we study are composed of an uncontrollable part (the "object") and a controlled one (the "robot"), linked by a unilateral constraint and an impact rule. A systematic and general control design method for this class of systems is proposed. The approach is a nontrivial extension of the one degree-of-freedom (DOF) juggler control design. In addition to the robot control, it is also useful to study some intermediate controllability properties of the object's impact Poincaré mapping, which generally takes the form of a non-linear discrete-time system. The force input mainly consists of a family of dead-beat feedback control laws, introduced via a recur-sive procedure, and exploiting the underlying discrete-time structure of the system. The main goal of this paper is to highlight the role of various physical and control properties characteristic of the system on its stabilizability properties and to propose solutions in certain cases

    Model-based control of slugging: advances and challenges

    No full text
    We review recent advances in the suppression of the slugging phenomenon by model-based control. We focus on three aspects of recent contributions: models, observers and control laws. For each category, we evaluate and compare existing solutions, and propose directions for improvement

    Finite-Time Composite Position Control for a Disturbed Pneumatic Servo System

    Get PDF
    This paper investigates the finite-time position tracking control problem of pneumatic servo systems subject to hard nonlinearities and various disturbances. A finite-time disturbance observer is firstly designed, which guarantees that the disturbances can be accurately estimated in a finite time. Then, by combining disturbances compensation and state feedback controller together, a nonsmooth composite controller is developed based on sliding mode control approach and homogeneous theory. It is proved that the tracking errors under the proposed composite control approach can be stabilized to zero in finite time. Moreover, compared with pure state feedback control, the proposed composite control scheme offers a faster convergence rate and a better disturbance rejection property. Finally, numerical simulations illustrate the effectiveness of the proposed control scheme

    Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems

    Get PDF
    This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment

    Finite-time control for uncertain systems and application to flight control

    Get PDF
    In this paper, the finite-time control design problem for a class of nonlinear systems with matched and mismatched uncertainty is addressed. The finite-time control scheme is designed by integrating multi power reaching (MPR) law and finite-time disturbance observer (FTDO) into integral sliding mode control, where a novel sliding surface is designed, and the FTDO is applied to estimate the uncertainty. Then the fixed-time reachability of the MPR law is analyzed, and the finite-time stability of the closed-loop system is proven in the framework of Lyapunov stability theory. Finally, numerical simulation and the application to the flight control of hypersonic vehicle (HSV) are provided to show the effectiveness of the designed controller
    corecore