2,687 research outputs found

    A Note on the Estimation of the Hölder Constant

    Get PDF
    In this article, we develop a nonparametric estimator for the Hölder constant of a density function. We consider a simulation study to evaluate the performance of the proposal and construct smooth bootstrap confidence intervals. Also, we give a brief review over the impossibility to decide whether a density function is Hölder.Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification

    A Simple Approach to Maximum Intractable Likelihood Estimation

    Get PDF
    Approximate Bayesian Computation (ABC) can be viewed as an analytic approximation of an intractable likelihood coupled with an elementary simulation step. Such a view, combined with a suitable instrumental prior distribution permits maximum-likelihood (or maximum-a-posteriori) inference to be conducted, approximately, using essentially the same techniques. An elementary approach to this problem which simply obtains a nonparametric approximation of the likelihood surface which is then used as a smooth proxy for the likelihood in a subsequent maximisation step is developed here and the convergence of this class of algorithms is characterised theoretically. The use of non-sufficient summary statistics in this context is considered. Applying the proposed method to four problems demonstrates good performance. The proposed approach provides an alternative for approximating the maximum likelihood estimator (MLE) in complex scenarios

    Global and Local Two-Sample Tests via Regression

    Full text link
    Two-sample testing is a fundamental problem in statistics. Despite its long history, there has been renewed interest in this problem with the advent of high-dimensional and complex data. Specifically, in the machine learning literature, there have been recent methodological developments such as classification accuracy tests. The goal of this work is to present a regression approach to comparing multivariate distributions of complex data. Depending on the chosen regression model, our framework can efficiently handle different types of variables and various structures in the data, with competitive power under many practical scenarios. Whereas previous work has been largely limited to global tests which conceal much of the local information, our approach naturally leads to a local two-sample testing framework in which we identify local differences between multivariate distributions with statistical confidence. We demonstrate the efficacy of our approach both theoretically and empirically, under some well-known parametric and nonparametric regression methods. Our proposed methods are applied to simulated data as well as a challenging astronomy data set to assess their practical usefulness

    Semiparametric estimation of a two-component mixture model

    Full text link
    Suppose that univariate data are drawn from a mixture of two distributions that are equal up to a shift parameter. Such a model is known to be nonidentifiable from a nonparametric viewpoint. However, if we assume that the unknown mixed distribution is symmetric, we obtain the identifiability of this model, which is then defined by four unknown parameters: the mixing proportion, two location parameters and the cumulative distribution function of the symmetric mixed distribution. We propose estimators for these four parameters when no training data is available. Our estimators are shown to be strongly consistent under mild regularity assumptions and their convergence rates are studied. Their finite-sample properties are illustrated by a Monte Carlo study and our method is applied to real data.Comment: Published at http://dx.doi.org/10.1214/009053606000000353 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore