2,484 research outputs found

    Simultaneous Distributed Sensor Self-Localization and Target Tracking Using Belief Propagation and Likelihood Consensus

    Full text link
    We introduce the framework of cooperative simultaneous localization and tracking (CoSLAT), which provides a consistent combination of cooperative self-localization (CSL) and distributed target tracking (DTT) in sensor networks without a fusion center. CoSLAT extends simultaneous localization and tracking (SLAT) in that it uses also intersensor measurements. Starting from a factor graph formulation of the CoSLAT problem, we develop a particle-based, distributed message passing algorithm for CoSLAT that combines nonparametric belief propagation with the likelihood consensus scheme. The proposed CoSLAT algorithm improves on state-of-the-art CSL and DTT algorithms by exchanging probabilistic information between CSL and DTT. Simulation results demonstrate substantial improvements in both self-localization and tracking performance.Comment: 10 pages, 5 figure

    Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages

    Get PDF
    This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Distributed data association for multi-target tracking in sensor networks

    Get PDF
    Associating sensor measurements with target tracks is a fundamental and challenging problem in multi-target tracking. The problem is even more challenging in the context of sensor networks, since association is coupled across the network, yet centralized data processing is in general infeasible due to power and bandwidth limitations. Hence efficient, distributed solutions are needed. We propose techniques based on graphical models to efficiently solve such data association problems in sensor networks. Our approach scales well with the number of sensor nodes in the network, and it is well--suited for distributed implementation. Distributed inference is realized by a message--passing algorithm which requires iterative, parallel exchange of information among neighboring nodes on the graph. So as to address trade--offs between inference performance and communication costs, we also propose a communication--sensitive form of message--passing that is capable of achieving near--optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data
    corecore