822 research outputs found

    Segmentation of the evolving left ventricle by learning the dynamics

    Get PDF
    We propose a method for recursive segmentation of the left ventricle (LV) across a temporal sequence of magnetic resonance (MR) images. The approach involves a technique for learning the LV boundary dynamics together with a particle-based inference algorithm on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and boundary estimation involves incorporating curve evolution into state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. We assess and demonstrate the effectiveness of the proposed framework on a large data set of breath-hold cardiac MR image sequences

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object

    Ten simple rules for reporting voxel-based morphometry studies

    Get PDF
    Voxel-based morphometry [Ashburner, J. and Friston, K.J., 2000. Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1), 805–821] is a commonly used tool for studying patterns of brain change in development or disease and neuroanatomical correlates of subject characteristics. In performing a VBM study, many methodological options are available; if the study is to be easily interpretable and repeatable, the processing steps and decisions must be clearly described. Similarly, unusual methods and parameter choices should be justified in order to aid readers in judging the importance of such options or in comparing the work with other studies. This editorial suggests core principles that should be followed and information that should be included when reporting a VBM study in order to make it transparent, replicable and useful

    Nonparametric neighborhood statistics for MRI denoising

    Get PDF
    technical reportThis paper presents a novel method for denoising MR images that relies on an optimal estimation, combining a likelihood model with an adaptive image prior. The method models images as random fields and exploits the properties of independent Rician noise to learn the higher-order statistics of image neighborhoods from corrupted input data. It uses these statistics as priors within a Bayesian denoising framework. This paper presents an information-theoretic method for characterizing neighborhood structure using nonparametric density estimation. The formulation generalizes easily to simultaneous denoising of multimodal MRI, exploiting the relationships between modalities to further enhance performance. The method, relying on the information content of input data for noise estimation and setting important parameters, does not require significant parameter tuning. Qualitative and quantitative results on real, simulated, and multimodal data, including comparisons with other approaches, demonstrate the effectiveness of the method

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy

    WARP: Wavelets with adaptive recursive partitioning for multi-dimensional data

    Full text link
    Effective identification of asymmetric and local features in images and other data observed on multi-dimensional grids plays a critical role in a wide range of applications including biomedical and natural image processing. Moreover, the ever increasing amount of image data, in terms of both the resolution per image and the number of images processed per application, requires algorithms and methods for such applications to be computationally efficient. We develop a new probabilistic framework for multi-dimensional data to overcome these challenges through incorporating data adaptivity into discrete wavelet transforms, thereby allowing them to adapt to the geometric structure of the data while maintaining the linear computational scalability. By exploiting a connection between the local directionality of wavelet transforms and recursive dyadic partitioning on the grid points of the observation, we obtain the desired adaptivity through adding to the traditional Bayesian wavelet regression framework an additional layer of Bayesian modeling on the space of recursive partitions over the grid points. We derive the corresponding inference recipe in the form of a recursive representation of the exact posterior, and develop a class of efficient recursive message passing algorithms for achieving exact Bayesian inference with a computational complexity linear in the resolution and sample size of the images. While our framework is applicable to a range of problems including multi-dimensional signal processing, compression, and structural learning, we illustrate its work and evaluate its performance in the context of 2D and 3D image reconstruction using real images from the ImageNet database. We also apply the framework to analyze a data set from retinal optical coherence tomography

    Bayesian Nonparametric Priors for Hidden Markov Random Fields

    Get PDF
    National audienceL'un des problèmes centraux en statistique et apprentissage automatique est de savoir comment choisir un modèle adéquat qui peut automatiquement s'adapter à la complexité des données observées. L'approche bayésienne non paramétrique est une solution intéressante pour gérer cette difficulté. Basés sur un espace de paramètres en dimensioninfinie, les modèles bayésiens non paramétriques sont flexibles et peuvent être relativement facilement utilisés pour apprendre des jeux de données complexes. Dans ce travail, nous abordons le problème de la détermination automatique du nombre de groupes en classification non supervisée lorsque les données à classer ne sont pas indépendantes maismodélisées à l'aide d'un champ de Markov. Plus précisément, l'estimation du nombre de groupes est évitée en considérant un modèle qui suppose un nombre infini de groupes. Nous montrons comment un champ aléatoire de Markov peut être combiné avec différentes lois a priori non paramétriques. Nous illustrons cela à l'aide d'un modèle de Potts combiné à un processus de Dirichlet et à un processus de Pitman-Yor. L'inférence de ces modèles est basée sur l'algorithme d'expectation-maximization variationnel en raison de son coût de calcul plus faible que l'approche Monte-Carlo par chaînes Markov (MCMC). L'approche proposée est appliquée à la segmentation d'images et quelques comparaisons et résultats préliminaires sont présentés et discutés
    • …
    corecore