14,843 research outputs found

    Nonparametric General Reinforcement Learning

    No full text
    Reinforcement learning problems are often phrased in terms of Markov decision processes (MDPs). In this thesis we go beyond MDPs and consider reinforcement learning in environments that are non-Markovian, non-ergodic and only partially observable. Our focus is not on practical algorithms, but rather on the fundamental underlying problems: How do we balance exploration and exploitation? How do we explore optimally? When is an agent optimal? We follow the nonparametric realizable paradigm: we assume the data is drawn from an unknown source that belongs to a known countable class of candidates. First, we consider the passive (sequence prediction) setting, learning from data that is not independent and identically distributed. We collect results from artificial intelligence, algorithmic information theory, and game theory and put them in a reinforcement learning context: they demonstrate how an agent can learn the value of its own policy. Next, we establish negative results on Bayesian reinforcement learning agents, in particular AIXI. We show that unlucky or adversarial choices of the prior cause the agent to misbehave drastically. Therefore Legg-Hutter intelligence and balanced Pareto optimality, which depend crucially on the choice of the prior, are entirely subjective. Moreover, in the class of all computable environments every policy is Pareto optimal. This undermines all existing optimality properties for AIXI. However, there are Bayesian approaches to general reinforcement learning that satisfy objective optimality guarantees: We prove that Thompson sampling is asymptotically optimal in stochastic environments in the sense that its value converges to the value of the optimal policy. We connect asymptotic optimality to regret given a recoverability assumption on the environment that allows the agent to recover from mistakes. Hence Thompson sampling achieves sublinear regret in these environments. AIXI is known to be incomputable. We quantify this using the arithmetical hierarchy, and establish upper and corresponding lower bounds for incomputability. Further, we show that AIXI is not limit computable, thus cannot be approximated using finite computation. However there are limit computable ε-optimal approximations to AIXI. We also derive computability bounds for knowledge-seeking agents, and give a limit computable weakly asymptotically optimal reinforcement learning agent. Finally, our results culminate in a formal solution to the grain of truth problem: A Bayesian agent acting in a multi-agent environment learns to predict the other agents' policies if its prior assigns positive probability to them (the prior contains a grain of truth). We construct a large but limit computable class containing a grain of truth and show that agents based on Thompson sampling over this class converge to play ε-Nash equilibria in arbitrary unknown computable multi-agent environments

    Nonparametric General Reinforcement Learning

    No full text
    Reinforcement learning problems are often phrased in terms of Markov decision processes (MDPs). In this thesis we go beyond MDPs and consider reinforcement learning in environments that are non-Markovian, non-ergodic and only partially observable. Our focus is not on practical algorithms, but rather on the fundamental underlying problems: How do we balance exploration and exploitation? How do we explore optimally? When is an agent optimal? We follow the nonparametric realizable paradigm: we assume the data is drawn from an unknown source that belongs to a known countable class of candidates. First, we consider the passive (sequence prediction) setting, learning from data that is not independent and identically distributed. We collect results from artificial intelligence, algorithmic information theory, and game theory and put them in a reinforcement learning context: they demonstrate how an agent can learn the value of its own policy. Next, we establish negative results on Bayesian reinforcement learning agents, in particular AIXI. We show that unlucky or adversarial choices of the prior cause the agent to misbehave drastically. Therefore Legg-Hutter intelligence and balanced Pareto optimality, which depend crucially on the choice of the prior, are entirely subjective. Moreover, in the class of all computable environments every policy is Pareto optimal. This undermines all existing optimality properties for AIXI. However, there are Bayesian approaches to general reinforcement learning that satisfy objective optimality guarantees: We prove that Thompson sampling is asymptotically optimal in stochastic environments in the sense that its value converges to the value of the optimal policy. We connect asymptotic optimality to regret given a recoverability assumption on the environment that allows the agent to recover from mistakes. Hence Thompson sampling achieves sublinear regret in these environments. AIXI is known to be incomputable. We quantify this using the arithmetical hierarchy, and establish upper and corresponding lower bounds for incomputability. Further, we show that AIXI is not limit computable, thus cannot be approximated using finite computation. However there are limit computable ε-optimal approximations to AIXI. We also derive computability bounds for knowledge-seeking agents, and give a limit computable weakly asymptotically optimal reinforcement learning agent. Finally, our results culminate in a formal solution to the grain of truth problem: A Bayesian agent acting in a multi-agent environment learns to predict the other agents' policies if its prior assigns positive probability to them (the prior contains a grain of truth). We construct a large but limit computable class containing a grain of truth and show that agents based on Thompson sampling over this class converge to play ε-Nash equilibria in arbitrary unknown computable multi-agent environments

    On the Design of LQR Kernels for Efficient Controller Learning

    Full text link
    Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.Comment: 8 pages, 5 figures, to appear in 56th IEEE Conference on Decision and Control (CDC 2017

    Bayesian Nonparametric Feature and Policy Learning for Decision-Making

    Full text link
    Learning from demonstrations has gained increasing interest in the recent past, enabling an agent to learn how to make decisions by observing an experienced teacher. While many approaches have been proposed to solve this problem, there is only little work that focuses on reasoning about the observed behavior. We assume that, in many practical problems, an agent makes its decision based on latent features, indicating a certain action. Therefore, we propose a generative model for the states and actions. Inference reveals the number of features, the features, and the policies, allowing us to learn and to analyze the underlying structure of the observed behavior. Further, our approach enables prediction of actions for new states. Simulations are used to assess the performance of the algorithm based upon this model. Moreover, the problem of learning a driver's behavior is investigated, demonstrating the performance of the proposed model in a real-world scenario
    • …
    corecore