5,784 research outputs found

    A selective overview of nonparametric methods in financial econometrics

    Full text link
    This paper gives a brief overview on the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inferences of instantaneous returns and volatility functions of time-homogeneous and time-dependent diffusion processes, and estimation of transition densities and state price densities. We first briefly describe the problems and then outline main techniques and main results. Some useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our presentation and applications.Comment: 32 pages include 7 figure

    Semiparametric Estimation of Markov Decision Processeswith Continuous State Space

    Get PDF
    We propose a general two-step estimation method for the structural parameters ofpopular semiparametric Markovian discrete choice models that include a class ofMarkovian Games andallow for continuous observable state space. The estimation procedure is simpleas it directly generalizes the computationally attractive methodology of Pesendorferand Schmidt-Dengler (2008) that assumed finite observable states. This extensionis non-trivial as the value functions, to be estimated nonparametrically in the firststage, are defined recursively in a non-linear functional equation. Utilizingstructural assumptions, we show how to consistently estimate the infinitedimensional parameters as the solution to some type II integral equations, thesolving of which is a well-posed problem. We provide sufficient set of primitives toobtain root-T consistent estimators for the finite dimensional structural parametersand the distribution theory for the value functions in a time series framework.Discrete Markov Decision Models, Kernel Smoothing, Markovian Games, Semi-parametric Estimation, Well-Posed Inverse Problem.D

    Experimental results : Reinforcement Learning of POMDPs using Spectral Methods

    Get PDF
    We propose a new reinforcement learning algorithm for partially observable Markov decision processes (POMDP) based on spectral decomposition methods. While spectral methods have been previously employed for consistent learning of (passive) latent variable models such as hidden Markov models, POMDPs are more challenging since the learner interacts with the environment and possibly changes the future observations in the process. We devise a learning algorithm running through epochs, in each epoch we employ spectral techniques to learn the POMDP parameters from a trajectory generated by a fixed policy. At the end of the epoch, an optimization oracle returns the optimal memoryless planning policy which maximizes the expected reward based on the estimated POMDP model. We prove an order-optimal regret bound with respect to the optimal memoryless policy and efficient scaling with respect to the dimensionality of observation and action spaces.Comment: 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spai

    Nonparametric Uncertainty Quantification for Stochastic Gradient Flows

    Full text link
    This paper presents a nonparametric statistical modeling method for quantifying uncertainty in stochastic gradient systems with isotropic diffusion. The central idea is to apply the diffusion maps algorithm to a training data set to produce a stochastic matrix whose generator is a discrete approximation to the backward Kolmogorov operator of the underlying dynamics. The eigenvectors of this stochastic matrix, which we will refer to as the diffusion coordinates, are discrete approximations to the eigenfunctions of the Kolmogorov operator and form an orthonormal basis for functions defined on the data set. Using this basis, we consider the projection of three uncertainty quantification (UQ) problems (prediction, filtering, and response) into the diffusion coordinates. In these coordinates, the nonlinear prediction and response problems reduce to solving systems of infinite-dimensional linear ordinary differential equations. Similarly, the continuous-time nonlinear filtering problem reduces to solving a system of infinite-dimensional linear stochastic differential equations. Solving the UQ problems then reduces to solving the corresponding truncated linear systems in finitely many diffusion coordinates. By solving these systems we give a model-free algorithm for UQ on gradient flow systems with isotropic diffusion. We numerically verify these algorithms on a 1-dimensional linear gradient flow system where the analytic solutions of the UQ problems are known. We also apply the algorithm to a chaotically forced nonlinear gradient flow system which is known to be well approximated as a stochastically forced gradient flow.Comment: Find the associated videos at: http://personal.psu.edu/thb11

    Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments

    Get PDF
    Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.dynamic latent variable models; simulation-based estimation; simulated moments; kernel regression; nonparametric estimation

    Semiparametric identification of structural dynamic optimal stopping time models

    Get PDF
    This paper presents new identification results for the class of structural dynamic optimal stopping time models that are built upon the framework of the structural discrete Markov decision processes proposed by Rust (1994). We demonstrate how to semiparametrically identify the deep structural parameters of interest in the case where the utility function of an absorbing choice in the model is parametric but the distribution of unobserved heterogeneity is nonparametric. Our identification strategy depends on availability of a continuous observed state variable that satisfies certain exclusion restrictions. If such excluded variable is accessible, we show that the dynamic optimal stopping model is semiparametrically identified using control function approaches

    Empirical Pricing Kernels and Investor Preferences

    Get PDF
    This paper analyzes empirical market utility functions and pricing kernels derived from the DAX and DAX option data for three market regimes. A consistent parametric framework of stochastic volatility is used. All empirical market utility functions show a region of risk proclivity that is reproduced by adopting the hypothesis of heterogeneous individual investors whose utility functions have a switching point between bullish and bearish attitudes. The inverse problem of finding the distribution of individual switching points is formulated in the space of stock returns by discretization as a quadratic optimization problem. The resulting distributions vary over time and correspond to different market regimes.Utility function, Pricing Kernel, Behavioral Finance, Risk Aversion, Risk Proclivity, Heston model.

    Log-Concave Duality in Estimation and Control

    Full text link
    In this paper we generalize the estimation-control duality that exists in the linear-quadratic-Gaussian setting. We extend this duality to maximum a posteriori estimation of the system's state, where the measurement and dynamical system noise are independent log-concave random variables. More generally, we show that a problem which induces a convex penalty on noise terms will have a dual control problem. We provide conditions for strong duality to hold, and then prove relaxed conditions for the piecewise linear-quadratic case. The results have applications in estimation problems with nonsmooth densities, such as log-concave maximum likelihood densities. We conclude with an example reconstructing optimal estimates from solutions to the dual control problem, which has implications for sharing solution methods between the two types of problems
    corecore