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Abstract 

 
 
We propose a general two-step estimation method for the structural parameters of 
popular semiparametric Markovian discrete choice models that include a class of 
Markovian Games and 
allow for continuous observable state space. The estimation procedure is simple 
as it directly generalizes the computationally attractive methodology of Pesendorfer 
and Schmidt-Dengler (2008) that assumed finite observable states. This extension 
is non-trivial as the value functions, to be estimated nonparametrically in the first 
stage, are defined recursively in a non-linear functional equation. Utilizing 
structural assumptions, we show how to consistently estimate the infinite 
dimensional parameters as the solution to some type II integral equations, the 
solving of which is a well-posed problem. We provide sufficient set of primitives to 
obtain root-T consistent estimators for the finite dimensional structural parameters 
and the distribution theory for the value functions in a time series framework. 
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1 Introduction

The inadequacy of static frameworks to model economic phenomena led to the development of recur-

sive methods in economics. The mathematical theory underlying discrete time modelling is dynamic

programming developed by Bellman (1957); for a review of its prevalence in modern economic theory,

see Stokey and Lucas (1989). In this paper we study the estimation of structural parameters and

their functionals that underlie a class of Markov decision processes (MDP) with discrete controls and

time in the in�nite horizon setting. Such models are popular in applied work, in particular in labor

and industrial organization. The econometrics involved can be seen as an extension of the classical

discrete choice analysis to a dynamic framework.

Discrete choice modelling has a long established history in the structural analysis of behavioral

economics. McFadden (1974) pioneered the theory and methods of analyzing discrete choice in a

static framework. Rust (1987), using additive separability and conditional independence assumptions,

show that a class of dynamic discrete choice models can naturally preserve the familiar structure of

discrete choice problems of the static framework. In particular, Rust proposed the Nested Fixed Point

(NFP) algorithm to estimate his parametric model by the maximum likelihood method. However, in

practice, this method can post a considerable obstacle due to its requirement to repeatedly solve for

the �xed point of some nonlinear map to obtain the value functions. The two-step approach of Hotz

and Miller (1993) avoided the full solution method by relying on the existence of an inversion map

between the normalized value functions and the (conditional) choice probabilities, which signi�cantly

reduces the computational burden relative to the NFP algorithm.

The two-step estimator of Hotz and Miller is central to several methodologies that followed,

especially in the recent development of the estimation of dynamic games. A class of stationary

in�nite horizon Markovian games can be de�ned to include the MDP of interest as a special case.

Various estimation procedures have been proposed to estimate the structural parameters of dynamic

discrete action games; Pakes, Ostrovsky and Berry (2004), and Aguirregabiria and Mira (2007),

considered two-step method of moments and pseudo maximum likelihood estimators respectively,

which are included in the general class of asymptotic least square estimators de�ned by Pesendorfer

and Schmidt-Dengler (2008); Bajari, Benkard and Levin (2007) generalizes the simulation-based

estimators of Hotz et al. (1994) to the multiple agent setting. However, in both single and multiple

agent settings, the aforementioned work assumed the observed state space is �nite whenever the

transition distribution of the observed state variables is not speci�ed parametrically. As noted by

Aguirregabiria and Mira (2002,2007), we should be able to relax this requirement and allow for

uncountable observable state space.

In this paper we propose a simple two-step semiparametric approach that falls in the general
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class of semiparametric estimation discussed in Pakes and Olley (1995), and Chen, Linton and van

Keilegom (2003). The criterion function will be based on some conditional moment restrictions that

requires consistent estimators of the value functions. The additional di¢ culty here is due to the

fact that the in�nite dimensional parameter is de�ned through a linear integral equation of type

II. The study of the statistical properties of solutions to integral equations falls under the growing

research area on inverse problem in econometrics, see Carrasco, Florens and Renault (2007) for a

survey. Type II integral equations are found, amongst others, in the study of additive models, see

Mammen, Linton and Nielson (1995). We show that our problem is generally well-posed and utilize

the approach similar to Linton and Mammen (2005) to estimate and provide the distribution theory

for the in�nite dimensional parameters of interest.

Our estimation strategy can be seen as a generalization of the unifying method of Pesendorfer and

Schmidt-Dengler (2008) that allows for continuous components in the observable state space. The

novel approach of Pesendorfer and Schmidt-Dengler relies on the attractive feature of the in�nite

time stationary model, where they write their ex-ante value function as the solution to a matrix

equation.1 We show that the solving of an analogous linear equation, in an in�nite dimensional

space, is also a well-posed problem for both population and empirical versions (at least for large

sample size).2 We note that an independent working paper of Bajari, Chernozhukov, Hong and

Nekipelov (2008) also proposes a sieve estimator for a closely related Markovian games, which allows

for continuous observable state space. Therefore our methods are complementary in �lling this gap

in the literature. However, our estimation strategy, which is simple and intuitive like its predecessor.

We use the local approach of kernel smoothing, under some easily interpretable primitive conditions,

to provide explicit pointwise distribution theory of the in�nite dimensional parameters that would

otherwise be elusive with the series or splines expansion. Since the in�nite dimensional parameters

in MDP are the value functions, they may be of considerable interest themselves. Another advantage

for the local estimator includes the optimality in the minimax sense for local linear estimators, see

Fan (1993). In addition, we explicitly work under time series framework and provide the type of

primitive conditions required for the validity of the methodology.

Since the main idea can be fully illustrated in the single agent setup, for most parts of the

paper we consider the single agent setup and leave the discussion of the Markovian game estimation

to the latter section. The paper is organized as follows. Section 2 de�nes the MDP of interest,

1A closely related technique is also used in the estimating a dynamic auction game of Jofre-Bonet and Pesendorfer

(2003).
2We only focus on the estimation aspect as, taking the approach of Magnac and Thesmar (2002), one can simply

write down extensions of nonparametric identi�cation results on the per period payo¤ functions of Pesendorfer and

Schmidt-Dengler (2003,2008).
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motivates and discusses the estimation strategy and the related linear inverse problem. Section 3

describes in detail the practical implementation of the procedure to obtain the feasible conditional

choice probabilities. In Section 4, primitive conditions and the consequent asymptotic distribution

are provided, the semiparametric pro�led likelihood estimator is illustrated as a special case. Section

5 discusses the extension to dynamic game setting. Section 6 presents a small scale Monte Carlo

experiment to study the �nite sample performance of our estimator. Section 7 concludes.

2 Markov Decision Processes

We de�ne our time homogeneous MDP and introduce the main model assumptions and notation

used throughout the paper. The sources of the computational complexity for estimating MDP are

brie�y reviewed, there we focus on the representation of the value function as a solution to the policy

value equation that can generally be written as an integral equation, in 2.2. We discuss the inverse

problem associated with solving such integral equations in 2.3.

2.1 De�nitions and Assumptions

We consider a decision process of a forward looking agent who solves the following in�nite horizon

intertemporal problem. The random variables in the model are the control and state variables,

denoted by at and st respectively. The control variable, at, belongs to a �nite set of alternatives

A = f1; : : : ; Kg. The state variables, st, has support S � RL+K . At each period t, the agent observes
st and chooses an action at in order to maximize her discounted expected utility. The present period

utility is time separable and is represented by u (at; st). The agent�s action in period t a¤ects the

uncertain future states according to the (�rst order) Markovian transition density p (dst+1jst; at).
The next period utility is subjected to discounting at the rate � 2 (0; 1). Formally, for any time t,
the agent is represented by a triple of primitives (u; �; F ), who is assumed to behave according to an

optimal decision rule, f�� (s� )g1�=t, in solving the following sequential problem

V (st) = max
fa� (s� )g1�=t

E

" 1X
�=t

��u (a� (s� ) ; s� )

����� st
#
s.t. a� (s� ) 2 A for all � � t: (1)

Under some regularity conditions, see Bertsekas and Shreve (1978) and Rust (1994), Blackwell�s

Theorem and its generalization ensure the following important properties. First, there exists a

stationary (time invariant) Markovian optimal policy function � : S ! A so that � (st) = � (st+� )

for any st = st+� and any t; � , where

� (st) = argmax
a2A

fu (a; st) + �E [V (st+1) jst; at = a]g :
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Secondly, the value function, de�ned in (1), is the unique solution to the Bellman�s equation

V (st) = max
a2A

fu (a; st) + �E [V (st+1) jst; at = a]g : (2)

We now introduce the following set of modelling assumptions.

Assumption M1: (Conditional Independence) The transitional density has the following factor-

ization: p (dxt+1; d"t+1jxt; "t; at) = q (d"t+1jxt+1) fX0jX;A (dxt+1jxt; at), where the �rst moment of "t
exists and its conditional distribution is absolutely continuous with respect to the Lebesgue measure

in RK, we denote its density by q.
The conditional independence assumption of Rust (1987) is fundamental in the current literature.

It is a subject of current research on how to �nd a practical methodology that can relax this assump-

tion, for example Arcidiacono and Miller (2008). The continuity assumption on the distribution of

"t ensures we can apply Hotz and Miller�s inversion theorem.

Assumption M2: The support of st = (xt; "t) is X � E, where X is a compact subset of RL,
in particular, xt =

�
xct ; x

d
t

�
2 XC �XD, and E = RK.

In order to avoid a degenerate model, we assume that the state variables st = (xt; "t) 2 X � RK

can be separated into two parts, which are observable and unobservable respectively to the econome-

trician; see Rust (1994a) for various interpretations of the unobserved heterogeneity. Compactness

of X is assumed for simplicity, in particular to XC can be unbounded.

Assumption M3: (Additive Separability) The per period payo¤ function u : A�X � E ! R is
additive separable w.r.t. unobservable state variables, u (at; xt; "t) = � (at; xt) +

PK
k=1 "ak;t1 [at = k].

The combination of M1 and M3 allows us to set our model in the familiar framework of static

discrete choice modelling.

We shall introduce the structural parameters � 2 � � RM that parameterize � later in Section 3

to keep the notation of the general discussion simple. It is indeed our goal to estimate � as well as

some functionals depending on them. Conditions M1 - M3 are crucial to the estimation methodology

we propose. These conditions are standard in the literature. In particular, M2 is weaker than the

usual �nite X assumption when no parametric assumption is assumed on fX0jX;A (dxt+1jxt; at) in the
in�nite horizon framework. For departures of this framework see the discussion in the survey of

Aguirregabiria and Mira (2008) and the references therein. Henceforth Conditions M1 - M3 will be

assumed and later strengthened as appropriate.
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2.2 Value Functions

Similarly to the static discrete choice models, the choice probabilities play a central role in the

analysis of the controlled process. There are two numerical aspects that we need to consider in the

evaluation of the choice probabilities. The �rst are the multiple integrals, that also arise in the

static framework, where in practice many researchers avoid this issue via the use of conditional logit

assumption of McFadden (1974).3 The second is regarding the value function - this is unique to the

dynamic setup. To see precisely the problem we face, we �rst update the Bellman�s equation (2)

under the assumptions M1 - M3,

V (st) = max
a2A

f� (a; xt) + "a;t + �E [V (st+1) jxt; at = a]g :

Denoting the future expected payo¤E [V (st+1) jxt; at] by g (at; xt), and the choice speci�c value, net
of "a;t, � (at; xt) + �g (at; xt) by v (at; xt), the optimal policy function must satisfy

� (xt; "t) = a, v (a; xt) + "a;t � v (a0; xt) + "a0;t for a0 6= a: (3)

The conditional choice probabilities, fP (ajx)g, are then de�ned by

P (ajx) = Pr [v (a; xt) + "a;t � v (a0; xt) + "a0;t for a0 6= ajxt = x] (4)

=

Z
1 [� (x; "t) = a] q (d"tjx) :

Even if we knew v, (4) will generally not have a closed form and the task of performing multiple

integrals numerically can be non-trivial, see Hajivassiliou and Ruud (1994) for an extensive discussion

on an alternative approach to approximating integrals. For some speci�c distributional assumptions

on "t, for example using the popular i.i.d. extreme value of type I - we can avoid the multiple integrals

as (4) has the well known multinomial logit form

P (ajx) = exp (v (a; x))X
a02A

exp (v (a0; x))
:

Our estimation strategy accommodates for general form of distribution. However, the problem we

want to focus on is the fact that we generally do not know v, as it depends on g that is de�ned through

some nonlinear functional equation that we need to solve for. Next, we outline a characterization of

the value function that motivates our approach to estimate g (and v).

The main insight to the simplicity of our methodology is motivated from the geometric series

representation for the value function that is commonly used in dynamic programming theory, for

3Unlike in static models, we do not su¤er from the undesirable I.I.A. when use i.i.d. extreme values errors of type

I in the dynamic framework.
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an example see Bertsekas and Shreve (1978, Chapter 9). More speci�cally, one can de�ne the value

function corresponding to a particular stationary Markovian policy � by

V (st;�) = E

" 1X
�=t

��u (� (s� ) ; s� )

����� s� = st

#
;

which is the solution to the following policy value equation

V (st;�) = u (� (st) ; st) + �E [V (st+1;�) jst] :

In this paper we only consider values corresponding to the the optimal policy, to reduce the notation,

so we suppress the explicit dependence on the policy. Therefore, by de�nition of the optimal policy,

the solution to (2) is also the solution to the following policy value equation

V (st) = u (� (st) ; st) + �E [V (st+1) jst] : (5)

If the state space S is �nite, then V is a solution of a matrix equation above since the conditional

expectation operator here can be represented by a stochastic transitional matrix. By the dominant

diagonal theorem, the matrix representing (I � �E [�js])s2S is invertible and (5) has a unique solution,
solvable by direct matrix inversion or approximated by a geometric series (see the Neumann series

below). The notion of simply inverting a matrix has an obvious appeal over Rust�s �xed point

iterations. In the in�nite dimensional case, the matrix equation generalizes to an integral equation.

In the presence of some unobserved state variables, we can also de�ne the conditional value function

as a solution to the following conditional policy value equation, taking conditional expectation on

(5) w.r.t. xt yields

E [V (st) jxt] = E [u (� (st) ; st) jxt] + �E [E [V (st+1) jst] jxt]

= E [u (� (st) ; st) jxt] + �E [E [V (st+1) jxt+1] jxt] ;

where the last equality follows from the law of iterated expectations and M1. Noting that, again by

M1, g (at; xt) can be written as E [m (xt+1) jxt; at], where m (xt) = E [V (st) jxt], then we have m as

a solution to some particular integral equation of type II; more succinctly, m satis�es

m = r + Lm; (6)

where r is the ex-ante expected immediate payo¤ given state xt, namely E [u (� (st) ; st) jxt = �];
and the integral operator L generates discounted expected next period values of its operands, e.g.
Lm (x) = �E [m (xt+1) jxt = x] for any x 2 X. If we could solve (6) then we need another level of

smoothing on m to obtain the choice speci�c value v. In particular, we can de�ne g through the

following linear transform

g = Hm; (7)
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where H is an integral operator that generates the choice speci�c expected next period values of its

operands operator, e.g. Hm (x; a) = �E [m (xt+1) jxt = x; at = a] for any (x; a) 2 X � A. Therefore

we can write the choice speci�c value net of unobserved states in a linear functional notation as

v = � + �Hm: (8)

In Section 3 we discuss in details on how to use the policy value approach to estimate the model

implied transformed of the value functions and choice probabilities.

2.3 Linear Inverse Problems

Before we consider the estimation of v, we need to address some issues regarding the solution of

integral equations (6). It is natural to ask the fundamental question whether our problem is well-

posed, more speci�cally, whether the solution of such equation exist and if so, whether it is unique

and stable. The study of the solution to such integral equations falls in the general framework of

linear inverse problems.

The study of inverse problems is an old problem in applied mathematics. The type of inverse

problems one commonly encounters in econometrics are integral equations. Carrasco et al. (2007)

focused their discussion on ill-posed problems of integral equations of type I where recent works

often needed regularizations in Hilbert Spaces to stabilize their solutions. Here we face an integral

equation of type II, which is easier to handle, and in addition, the convenient structure of the policy

value equations allows us to easily show that the problem is well-posed in a familiar Banach Space.

We now de�ne the normed linear space and the operator of interest, and proof this claim. We shall

simply state relevant results from the theory of integral equations. For de�nitions, proofs and further

details on integral equations, readers are referred to Kress (1999) and the references therein.

From the Riesz Theory of operator equations of the second kind with compact operators on a

normed space, say A : X ! X, we know that I � A is injective if and only if it is surjective,

and if it is bijective, then the inverse operator (I � A)�1 : X ! X is bounded. For the moment,

suppose that XD is empty, we will be working on the Banach space (B; k�k), where B = C (X) is

a space of continuous functions de�ned on the compact subset of RL, equipped with the sup-norm,
i.e. k�k = supx2X j� (x)j. L is a linear map, L : C (X)! C (X) , such that, for any � 2 C (X) and
x 2 X,

L� (x) = �

Z
X

� (x0) fX0jX (dx
0jx) ;

where fXjX (dxt+1jxt) denotes the conditional density of xt+1 given xt.
In this case since we know the existence, uniqueness and stability of the solution to (6) are assured

for any r = � 2 C (X) as we can show L is a contraction. To see this, take any � 2 C (X) and

7



x 2 X,
jL� (x)j � �

Z
X

j� (x0)j fX0jX (dx
0jx) � � sup

x2X
j� (x)j ;

since the discounting factor � 2 (0; 1),

kL�k � � k�k ) kLk � � < 1:

This implies that our inverse is well-posed. Further, the contraction property means we can represent

the solution to (6) using the Neumann series:

m = (I � L)�1 r (9)

= lim
T �!1

TX
�=1

L�r:

Therefore the in�nite series representation of the inverse suggests one obvious way of approximating

the solution to the integral equation which will converge geometrically fast to the true function. If X

is countable, then L� would be represented by a � -step ahead transition matrix (scaled by �� ). Note
that the operator for the (uncountable) in�nite dimensional case share the analogous interpretation

of � -step ahead transition operator with discounting.

Since our problem is well-posed, then it is reasonable to expect that with su¢ ciently good es-

timates of (r;L;H), our estimated integral equation is also well-posed and will lead to (uniform)
consistent estimators for (m; g; v). Our strategy is to use nonparametric methods to generate the

empirical versions of (6) and (7), then use them to provide an approximate for v necessary for

computing the choice probabilities.

3 Estimation

Given a time series fat; xtgTt=1 generated from the controlled process of an economic agent represented
by (u�0 ; �; p), for some �0 2 �, where u� re�ects the parameterization of � by �. In this section we
provide in details the procedure to estimate �0 as well as their corresponding conditional value

functions. We based our estimation on the conditional choice probabilities. We de�ne the model

implied choice probabilities from a family of value functions, fV�g�2�, induced by underlying optimal
policy that generates the data. In particular, for each �, V� satis�es (cf. equation (5))

V� (st) = u� (� (st) ; st) + �E [V� (st+1) jst] :

The policy value V� has the interpretation of a discounted expected value for an economic agent

whose payo¤ function is indexed by � but behaves optimally as if her structural parameter is �0. By
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de�nition of the optimal policy, V� coincides with the solution of a Bellman�s equation in (2) when

� = �0. We then de�ne the following (optimal) policy-induced equations to analogous to (6), (7) and

(8), respectively for each �:

m� = r� + Lm�; (10)

g� = Hm�; (11)

v� = �� + �Hm�; (12)

where r� is the ex-ante expected payo¤ given state xt, namely E [u� (� (st) ; st) jxt = �]; and the
integral operators L and H are the same as in Section 2.2. The functions m�; g� and v� are de�ned to

satisfy the linear equation and transforms respectively. Naturally, for each (a; x) 2 A�X, P� (ajx)
is then de�ned to satisfy

P� (ajx) = Pr [v� (a; xt) + "a;t � v� (a
0; xt) + "a0;t for a0 6= ajxt = x] ;

which is analogous to (4).

Our methodology proceeds in two steps. In the �rst step, we nonparametrically compute estimates

of the kernels of L;H and for each �, estimate r�, which are then used to estimate m� by solving the

empirical version of the integral equation (10) and estimate g� analogously from an empirical version

of (11). The second step is the optimization stage, the model implied choice speci�c value functions

are used to compute the choice probabilities that can be used to construct various objective functions

to estimate the structural parameter �0.

3.1 Estimation of r�;L and H

There are several decisions to be made to solve the empirical integral equation in (10). We need to

�rst decide on the nonparametric method. We will focus on the method of kernel smoothing due to its

simplicity of use as well as its well established theoretical grounding. Our nonparametric estimation

of the conditional expectations will be based on the Nadaraya-Watson estimator. However, since we

will be working on bounded sets, it is necessary to address the boundary e¤ects. The treatment of

the boundary issues is straightforward, the precise trimming condition is described in Section 4. So

we will assume to work on a smaller space XT � X where XT =
�
XC
T ; X

D
�
denotes a set where the

support of the uncountable component is some strict compact subset of XC but increases to XC in

T . When allowing for discrete components we simply use the frequency approach, smoothing over

the discrete components is also possible, see the monograph by Li and Racine (2006) for a recent

update on this literature. We will also need to make a decision on how to de�ne and interpolate

the solution to the empirical version of (10) in practice. We discuss two asymptotically equivalent
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options for this latter choice, whether the size of the empirical integral equation does or does not

depend on the sample size, as one may have a preference given the relative size of the number of

observations.

We now de�ne the nonparametric estimators, (br�; bL; bH), of (r�;L;H). Any generic density of a
mixed continuous-discrete random vector wt =

�
wct ; w

d
t

�
, fw : Rl

C � RlD ! R+ for some positive
integers lC and lD, is estimated as follows,

bfw �wc; wd� = 1

T

TX
t=1

Kh (w
c
t � wc)1

�
wdt = wd

�
;

where K is some user chosen symmetric probability density function, h is a positive bandwidth

and for simplicity independent of wc. Kh (�) = K (�=h) =h and if lC > 1 then Kh (w
c
t � wc) =

lCQ
l=1

Khl

�
wct;l � wcl

�
, 1 [�] denotes the indicator function, namely 1 [A] = 1 if event A occurs and takes

value zero otherwise. Similar to the product kernel, the contribution from a multivariate discrete

variable is represented by products of indicator functions. The conditional densities/probabilities are

estimated using the ratio of the joint and marginal densities. The local constant estimator of any

generic regression function, E [ztjwt = w] is de�ned by,

bE [ztjwt = w] =
1
T

PT
t=1 ztKh (w

c
t � wc)1

�
wdt = wd

�
bfw (w) : (13)

Estimation of r� For any x 2 XT ;

r� (x) = E [u� (at; xt; "t) jxt = x]

= E [�� (at; xt) jxt = x] + E ["atjxt = x]

= �1;� (x) + �2 (x) :

The �rst term can be estimated by

b�1;� (x) =X
a2A

bP (ajx)�� (a; x) ; (14)

or, alternatively, the Nadaraya-Watson estimator,

e�1;� (x) = bE [�� (at; xt) jxt = x] :

In (14), f bP (ajx)ga2A is a kernel estimator of the choice probabilities. We also comment that it might
be more convenient to use b�1;� over e�1;�, as we shall see, since the nonparametric estimates for the
choice probabilities are required to estimate �2.
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The conditional mean of the unobserved states, �2, is generally non-zero due to selectivity. By

Hotz and Miller�s inversion theorem, we know �2 can be expressed as a known smooth function of the

choice probabilities. An estimator of �2 can therefore be obtained by plugging in the local constant

(linear) estimator of the choice probabilities. For example, the i.i.d. type I extreme value errors

assumption will imply that

�2 (x) =  +
X
a2A

P (ajx) log (P (ajx)) ; (15)

where  is the Euler�s constant. Our procedure is not restricted to the conditional logit assumption.

Although other distributional assumption will generally not provide a closed form expression for �2
in fP (ajx)g, it can be computed for any (a; x) 2 A�X, for example see Pesendorfer and Schmidt-

Dengler (2003) who assume the unobserved states are i.i.d. standard normals. Note also that �2 is

independent of � as the distribution of "t is assumed to be known; in principles; our procedure can

be written to easily accommodate the case when the conditional distribution of "t is known up some

�nite dimensional parameters.

Estimation of L and H For the ease of notation let�s suppose XD is empty. For the integral

operators L and H, if we would like to use the numerical integration to approximate the integral,
we only need to provide the nonparametric estimators of their kernels, respectively, bfX0jX (dxt+1jxt)
and bfX0jX;A (dxt+1jxt; at).
For any � 2 C (XT ), the empirical operators are de�ned as,

bL� (x) =

Z
XT

� (x0) bfX0jX (dx
0jx) ; (16)

bH� (x; a) =

Z
XT

� (x0) bfX0jX;A (dx
0jx; a) : (17)

So bL and bH are linear operators on the Banach space of continuous functions on XT with range

C (XT ) and C (XT � A) respectively under sup-norm. Alternatively, we could use the Nadaraya-

Watson estimator, de�ned in (13), to estimate the operators,

eL� (x) = bE [� (xt+1) jxt = x] ;eH� (x; a) = bE [� (xt+1) jxt = x; at = a] :

This approach may be more convenient when sample size is relatively small, and we want to solve the

empirical version of (10) by using purely nonparametric methods for interpolation, where we could

use the local linear estimator to address the boundary e¤ects.

Note that, if X is �nite then the integrals in (16) and (17) will be de�ned with respect to discrete

measures, then ( bL; bH) and ( eL; eH) can be equivalently represented by the same stochastic matrices.
11



3.2 Estimation of m�; g� and v�

We �rst describe the procedure used in Linton and Mammen (2005), by using ( bL; bH), to solve the
empirical integral equation. We de�ne bm� as any sequence of random functions de�ned on XT that

approximately solves bm� = br� + bLbm�. Formally, we shall assume that bm� is any random sequence of

functions that satisfy

sup
�2�;x2XT

����I � bL� bm� (x)� br� (x)��� = op
�
T�1=2

�
; (18)

i.e., the right hand side of (18) is approximately zero. We allow this extra generality like Pakes and

Pollard (1989) and Linton and Mammen (2005). In practice, we solve the integral equation on a �nite

grid of points, which reduces it to a large linear system. Next we use bm� to de�ne bg�, speci�cally we
de�ne bg� as any random sequence of functions that satisfy

sup
�2�;a2A;x2XT

���bg� (a; x)� bHbm� (a; x)
��� = op

�
T�1=2

�
: (19)

Once we obtain bg�, the estimator of v� is de�ned by
sup

�2�;a2A;x2XT
jbv� (a; x)� �� (a; x)� �bg� (a; x)j = op

�
T�1=2

�
: (20)

For illustrational purposes, ignoring the trimming factors, we will assume that X = [x; x] � R.
For any integrable function � on X, de�ne J (�) =

R
� (t) dt. Given an ordered sequence of n

nodes ftj;ng � [a; b], and a corresponding sequence of weights f!j;ng such that
Pn

j=1 !j;n = b� a, a

valid integration rule would satisfy

lim
n!1

Jn (�) = J (�)

Jn (�) =
nX
j=1

!j;n� (tj;n) ;

for example Simpson�s rule and Gaussian quadrature both satisfy this property for smooth �. There-

fore the empirical version of (10) can be approximated for any x 2 [a; b] by

bm� (x) = br� (x) + �

nX
j=1

!j;n bfX0jX (tj;njx) bm� (tj;n) : (21)

So the desired solution that approximately solves the empirical integral equation will satisfy the

following equation at each node ftj;ng,

bm� (ti;n) = br� (ti;n) + �

nX
j=1

!j;n bfX0jX (tj;njti;n) bm� (tj;n) :

12



This is equivalent to solving a system of n equations with n variables, the linear system above can

be written in a matrix notation as bm� = br� + bL bm�; (22)

where bm� = (bm� (t1;n) ; : : : ; bm� (tn;n))
>;br� = (br� (t1;n) ; : : : ; br� (tn;n))> ; In is an identity matrix of

order n and bL is a square n matrix such that (bL)ij = �!j;n bfX0jX (tj;njti;n). Since bfX0jX (�jx) is a
proper density for any x, with a su¢ ciently large n, (In � bL) is invertible by the dominant diagonal
theorem. So there is a unique solution to the system (22) for a given br�. In practice we have a variety
of ways to solve for bm� with one obvious candidate being the successive approximation as mentioned

in (??). Once we obtain bm�, we can approximate bm� (x) for any x 2 X by substituting bm� into the

RHS of (21). This is known as the Nyström interpolation. We need to approximate another integral

to estimate g�. This could be done using the conventional method of kernel regression as discussed

in Section 3.1, or by appropriately selecting sequences of r nodes fqj;rg and weights
�
�j;n
	
so that

bg� (j; x) = rX
j=1

�j;n
bfX0jX;A (qj;rjx; j) bm� (qj;r) ;

where the computation for this last linear transform is trivial. See Judd (1998) for a more extensive

review of the methods and issues of approximating integrals and also the discussion of iterative

approaches in Linton and Mammen (2003) for large grid sizes.

Alternatively, we can form a matrix equation of size T � 1,

em� = er� + eL em�;

to estimate equation (10) at the observed points with the t-th element. For each t, let

em� (xt) = er� (xt) + �
1

T�1
PT�1

t=1 em� (xt+1)Kh (xt � x)
1

T�1
PT�1

�=1 Kh (x� � xt)
:

By the dominant diagonal theorem, the matrix equation above always has a unique solution for any

T � 2. Once solved, the estimators of em� can be interpolated by

em� (x) = er� (x) + � bE [m (xt+1) jxt = x] ;

for any x 2 XT . Similarly, eg� and ev� can be estimated nonparametrically without introducing any
additional numerical error. Clearly, the more observation we have, the latter method will be more

di¢ cult as dimension of the matrix representing eL is large whilst the grid points for the former
empirical equation is user-chosen.

13



3.3 Estimation of �

By construction, when � = �0, the model implied conditional choice probability P� coincides with

the underlying choice probabilities de�ned in (4). Therefore one natural estimator for the �nite

dimensional structural parameters can be obtained by maximizing a likelihood criterion. De�ne

QT (�) =
1

T

TX
t=1

logP� (atjxt) ; bQT (�) = 1

T

TX
t=1

ct;T log bP� (atjxt) : (23)

Here fct;Tg is a triangular array of trimming factors, more discussion on this can be found in Section
4. In practice, we replace P� (ajx) by

bP� (ajx) = Pr [bv� (a; xt) + "a;t � bv� (a0; xt) + "a0;t for a0 6= ajxt = x] ;

where bv� satis�es condition (20). Of particular interest is the special case of the conditional logit
framework, as discussed in Section 2, where we have

bP� (ajx) = exp (bv� (a; x))X
a02A

exp (bv� (a0; x)) :
Therefore bQT denotes the feasible objective function, which is identical to QT when the in�nite
dimensional component bv� is replaced by v�. We de�ne our maximum likelihood estimator, b�, to be
any sequence that satisfy the following in equality

bQT (b�) � sup
�2�

bQT (�)� op
�
T�1=2

�
: (24)

Alternatively, a class of criterion functions can be generated from the following conditional mo-

ment restrictions

E [1 [at = a]� P� (ajxt) jxt] = 0 for all a 2 A when � = �0:

Note that these moment conditions are the in�nite dimensional counterparts (with respect to the

observable states) of equation (18) in Pesendorfer and Schmidt-Dengler (2008) for a single agent

problem.

There are general large sample theory of pro�led semiparametric estimators available that treat

the estimators de�ned in our models.4 In particular, the work of Pakes and Olley (1995) and Chen,

Linton and van Keilegom (2003) provide high level conditions for obtaining root�T consistent esti-
mators are directly applicable. The latter is a generalization of the work by Pakes and Pollard (1989),

who provided the asymptotic theory when the criterion function is allowed to be non-smooth, which

4We can generally write the objective functions from the likelihood criterion (via �rst order conditions) and the
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may arise if we use simulation methods to compute the multiple integral of (4), to the semiparametric

framework.

In Section 4, as an illustration, we derive the asymptotic distribution of the semiparametric

likelihood estimator under a set of weak conditions in the conditional logit framework.

3.4 Practical Discussion

We re�ect on the computational e¤ort required of the proposed method. We only discuss the es-

timation of the conditional value functions. It will be helpful to have in mind the methodology of

Pesendorfer and Schmidt-Dengler (2008) as our methods coincide when the X is �nite and there

is only 1 player in the game (vice versa, extending from a single agent decision process to a dy-

namic game). For each �, the nonparametric estimates of (r�;L;H) have closed form and are very

easy to compute even with large dimensions, further, the empirical integral operators (or their ap-

proximations) only need to be computed once at the required nodes since they do not depend on

�. Solving the empirical integral equation to obtain bm�, in (22), is the only potential complication

that does not exist in a static problem. However, in this setup, this reduces to the need to invert a

large matrix that approximates (I � L) that only need to be done once at the beginning and stored
for future computation with any other �. Estimators of (m�; g�; v�) are obtained trivially for any

�, by simple matrix multiplication, once the empirical operator of (I � L)�1 is obtained. We note
that further computational gain is possible if �� is linear in �. More speci�cally, if �� = �>�0 for

some known functions �0 then r� = �>r0 + �2, where r0 (�) =
P

a2A P (aj�)�0 (a; �). Utilizing the
fact that the inverse of (I � L) is a linear operator, we have m� = �> (I � L)�1 r0 + (I � L)�1 �2,
where the estimates of (I � L)�1 r0 and (I � L)�1 �2 only need to be computed once. See Hotz,
Miller, Sanders and Smith (1994) and Bajari, Benkard and Levin (2007) for related utilization of the

repeated substitution concept.

However, it is important to note that, as we have decided on the kernel smoothing approach there

is an issue of bandwidth selection which is important for small sample properties. Further, it is easy

moment restrictions in the following way:

MT (�) =
1

T

TX
t=1

q (at; xt; �; v�) ; cMT (�) =
1

T

TX
t=1

ct;T q (at; xt; �; bv�) ;
where cMT is the feasible counterpart of MT . De�ne the limiting objective function M (�) = limT!1EMT (�) ; which

is assumed to exist and is uniquely minimized at � = �0. We then de�ne our estimator to be any sequence that satisfy

the following inequality, cMT (b�) � inf
�2�

cMT (�)
+ op �T�1=2� :
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to see that the invertibility of the matrix (I � bL) and (I � eL) are not dependent on the number of
continuous and/or discrete components. Clearly, there are a lot of choices available regarding integral

approximation and matrix inversion methods. It is beyond the scope of this paper to analyze the

�nite sample performance of these various methodologies.

4 Distribution Theory

In this section we provide a set of primitive conditions and derive the distribution theory for the

estimators b�, as de�ned in (24), and (bm�; bg�) as de�ned in (18) and (19) respectively when the unob-
served state variables is distributed as i.i.d. extreme value of type I. This distributional assumption

is the most commonly used in practice as it yields closed-form expressions for the choice probabil-

ities. We also restrict the dimensionality of XC to be a subset of R, the reason being this is the
scenario that applied researchers may prefer to work with. These speci�cs do not limit the usefulness

of the primitives provided. For other estimation criteria, since two-step estimation problems of this

type can be compartmentalized into nonparametric �rst stage and optimization in the second stage,

the primitives below will be directly applicable. In particular, the discussions and results in 4.1 are

independent of the choice of the objective functions chosen in the second stage. There might be

other intrinsically continuous observable state variables that require discretizing but with increasing

dimension in XC , the practitioners will need to employ higher order kernels and/or undersmooth in

order to obtain the parametric rate of convergence for the �nite structural parameters, adaptation

of the primitives are straightforward and will be discussed accordingly.

4.1 In�nite Dimensional Parameters

The relevant large sample properties for the nonparametric �rst stage, under the time series frame-

work, for the pointwise results see the results of Roussas (1967,1969), Rosenblatt (1970,1971) and

Robinson (1983). Roussas �rst provided central limit results for kernel estimates of Markov se-

quences, Rosenblatt established the asymptotic independence and Robinson generalized such results

to the �-mixing case. The uniform rates have been obtained for the class of polynomial estimators

by Masry (1996), in particular, our method is closely related to the recent framework of Linton and

Mammen (2005) who obtained the uniform rates and pointwise distribution theory for the solution

of a linear integral equation of type II.

We begin with some primitives. In addition to M1 - M3, they are not necessary and only su¢ cient

but they are weak enough to accommodate most of the existing empirical works in applied labor and

industrial organization involving estimation of MDP.
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We denote the strong mixing coe¢ cient as

� (k) = sup
t2N

sup
A2F1t+k;Ft�1

jPr (A \B)� Pr (A) Pr (B)j for k 2 Z;

where F b
a denotes the sigma-algebra generated by fat; xtg

b
t=a. Our regularity conditions are listed

below:

B1 X �� is a compact subset of RJ � RL with XC = [x; x].

B2 The process fat; xtgTt=1 is strictly stationary and strongly mixing, with a mixing coe¢ cient
� (k),such that for some C � 0 and some, possibly large � > 0; � (k) � Ck��.

B3 The density of xt is absolutely continuous fXC ;XD

�
dxt; x

d
t

�
for each xdt 2 XD. The joint

density of (at; xt) is bounded away from zero on XC and is twice continuously di¤erentiable

over XC for each
�
xdt ; at

�
2 XD � A. The joint density of (xt+1; xt; at) is twice continuously

di¤erentiable over XC �XC for each
�
xdt+1; x

d
t ; at

�
2 XD �XD � A.

B4 The mean of the per period payo¤ function u� (at; xt) is twice continuously di¤erentiable on

XC �� for each
�
xdt ; at

�
2 XD � A.

B5 The kernel function is a symmetric probability density function with bounded support such

that for some constant C; jK (u)�K (v)j � C ju� vj. De�ne �j (K) =
R
ujK (u) du and

�j (K) =
R
Kj (u) du.

B6 The bandwidth sequence hT satis�es hT = 0 (T )T
�1=5 and 0 (T ) bounded away from zero and

in�nity.

B7 The triangular array of trimming factors fct;Tg is de�ned such that ct;T = 1
�
xct 2 XC

T

�
where

XT = [x+ cT ; x� cT ] and fcTg is any positive sequence converging monotonically to zero such
that hT < cT .

B8 The distribution of "t is known to be distributed as i.i.d. extreme value of type I across K

alternatives, and is mean independent of xt and is i.i.d. across t.

The compactness of the parameter space in B1 is standard. Compactness of the continuous

component of the observable state space can be relaxed by using an increasing sequence of compact

sets that cover the whole real line, see Linton and Mammen (2005) for the modelling in the tails of

the distribution. The dimension of XC is assumed to be 1 for expositional simplicity, discussion on

this is follows the theorems below. On the other hand, it is a trivial matter to add arbitrary (�nite)

number of discrete components to XD.
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Condition B2 is quite weak despite the value of � can be large.

The assumptions of B3, B4 and B5 are standard in the kernel smoothing literature using second

order kernel.

Here in B6 we use the bandwidth with the optimal MSE rate for a regular 1-dimensional non-

parametric estimates.

The trimming factor in B7 provides the necessary treatment of the boundary e¤ects. This would

ensure all the uniform convergence results on the expanding compact subset fXTg whose limit is X.
In practice we will want to minimize the trimming out of the data, we can choose cT close enough

to hT to do this.

Condition B8 is not necessary for consistency and asymptotic normality for any of the parameters

below. The only requirement on the distribution of "t, for our methodology to work, is that it allows

us to employ Hotz and Miller�s inversion theorem. A su¢ cient condition for that is the distribution

of "t is known and satisfy M1. In particular, B8 yields us the simple multinomial logit form that is

often used in practice. For other distribution will result in the use of a more complicated inversion

map, for example see Pesendorfer and Schmidt-Dengler (2003) for the Gaussian case.

Next we provide pointwise distribution theory for the nonparametric estimators obtained from

the �rst stage, as described in Section 3, for any given set of values of the structural parameters.

The bias and the variance terms are complicated, the explicit formulae can be found along with all

proofs in the Appendix.

Theorem 1. Suppose B1� B8 hold. Then for each � 2 �, there exists deterministic functions
�m;� and !m;� such that for each x 2 int (X) ;p

ThT

�bm� (x)�m� (x)�
1

2
�2h

2
T�m;� (x)

�
=) N (0; !m;� (x)) ;

where bm� (x) is de�ned as in (18) and:

�m;� (x) = (I � L)�1
�
�r;� + �L;�

�
(x) ;

!m;� (x) =
�2

fX (x)

�
�2var (m� (xt+1) jxt = x) + !r;� (x)

�
:

Some components of the bias and variance are complicated, in particular the explicit form of �r;�, �L;�
and !r;� can be found below in (39),(48) and (40) respectively. The estimators bm� (x) and bm� (x

0)

are also asymptotically independent for any x 6= x0. Furthermore,

sup
(x;�)2XT��

jbm� (x)�m� (x)j = op
�
T�1=4

�
:

The pointwise rate of convergence, T�2=5, is the usual optimal rate (in the MSE sense) of a

1�dimensional nonparametric function. The above is obtained by using analogous arguments of
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Linton and Mammen (2005) after showing that the conditional density estimator that de�ne the

empirical integral operator converges uniformly (see Masry (1996)) over its domain. Similar to

Theorem 1, we also obtain the following results for the estimator of g�.

Theorem 2. Suppose B1�B8 hold. Then for each � 2 �; x 2 int (X) and a 2 A;p
ThT

�bg� (a; x)� g� (a; x)�
1

2
�2h

2
T�g;� (a; x)

�
=) N (0; !g;� (a; x)) ;

where bg� (a; x) is de�ned as in (19) and:
�g;� (a; x) = H (I � L)�1

�
�r;� + �L;�

�
(a; x) + �H;� (a; x) ;

!g;� (a; x) =
�2

fX;A (x; a)
var (m� (xt+1) jxt = x; at = a) :

The explicit form of �r;�, �L;� and �H;� can be found in (39),(48) and (49) respectively. bg� (a; x) andbg� (a0; x0) are also asymptotically independent for any x 6= x0 and any a. Furthermore,

sup
(x;a;�)2XT�A��

jbg� (a; x)� g� (a; x)j = op
�
T�1=4

�
:

We end with a brief discussion of the change in primitives required to accommodate the case when

the dimension of XC is higher than 1. Clearly, using the optimal (MSE) rates for hT , dim
�
XC
�

cannot exceed 3 with second order kernel if we were to have the uniform rate of convergence for

our nonparametric estimates to be faster than T�1=4 that is necessary for
p
T�consistency of the

�nite dimensional parameters. It is possible to overcome this by exploiting additional smoothness

(if available) of our densities. This can be done by using higher order kernels to control the order

of the bias, for details of their constructions and usages see Robinson (1988) and also Powell, Stock

and Stoker (1989).

4.2 Finite Dimensional Parameters

In order to obtain consistency result and the parametric rate of convergence for b�, we need to
adjust some assumptions described in the previous subsection and add an identi�cation assumption.

Consider:

B60 The bandwidth sequence hT satis�es Th4T ! 0 and Th2T !1

B9 The value �0 2 int (�) is de�ned by, for any " > 0

sup
k���0k�"

Q (�0)�Q (�) > 0;

where Q (�) denotes the limiting objective function of QT (de�ned in (23)), namely Q (�) =

limT!1EQT (�).
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The rate of undersmoothing (relative to B6) in Condition B60 ensures that the bias from the

nonparametric estimation disappears su¢ ciently quickly to obtain parametric rate of convergence forb�. To accommodate for higher dimension ofXC , we generally cannot just proceed by undersmoothing

but combining this with the use higher order kernels, again, see Robinson (1988) and also Powell,

Stock and Stoker (1989).

Condition B9 assumes the identi�cation of the parametric part. This is a high level assumption

that might not be easy to verify due to the complication with the value function. In practice we will

have to check for local maxima for robustness. We note that this is the only assumption concerning the

criterion function, for other type of objective functions, obvious analogous identi�cation conditions

will be required.

The properties of b� can be obtained by application of the asymptotic theory for semiparametric
pro�le estimators. This requires uniform expansion bg� (and hence bm�) and their derivatives with

respect to �.

Theorem 3. Suppose B1�B5; B60 and B7�B9 hold. Then

p
T
�b� � �0

�
=) N

�
0;J �1IJ �1� ;

where I is a complicated term representing the asymptotic variance of the leading terms in

1p
T

TX
t=1

@q(at;xt;�0;bg�0)
@�

(see Appendix A) and

J = E

�
@2q (at; xt; �0; g�0)

@�@�>

�
:

The root-T rate of convergence is common for such semiparametric estimators when the dimension

of the continuous component of X is not too large under some smoothness assumptions. We next

present the results for the feasible estimators of m and g:

Theorem 4. Suppose B1�B5; B60 and B7�B9 hold. Then for any arbitrary estimator e� such
that jje� � �0jj = Op

�
T�1=2

�
and x 2 int (X),p
ThT

�bme� (x)�m�0 (x)
�
=) N (0; !m;�0 (x)) ;

where bm�; �m;� and !m;� are de�ned as those in Theorem 1 and, bme� (x) and bme� (x0) are asymptotically
independent for any x 6= x0.

Similarly, for g� we have the following result.

Theorem 5. Suppose B1�B5; B60 and B7�B9 hold. Then for any arbitrary estimator e� such
that jje� � �0jj = Op

�
T�1=2

�
; x 2 int (X) and a 2 A;p
ThT

�bge� (a; x)� g�0 (a; x)
�
=) N (0; !g;�0 (a; x)) ;
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where bg�; �g;� and !g;� are de�ned as those in Theorem 2 and, bge� (a; x) and bge� (a0; x0) are asymptot-
ically independent for any x 6= x0 and any a.

Given the explicit forms of the bias and variance terms provided in the above theorems, inference

can be conducted using large sample approximation based on obvious plug-in estimators. However,

due to their complicated form, bootstrap procedures would most likely be preferred in practice.

Nevertheless, the explicit expressions we derive in the Appendix are still useful as they provide

insights into to the variation in the bias and variance of our estimators.

5 Markovian Games

The development of empirical dynamic games is of recent interest especially in the industrial orga-

nization literature. See Ackerberg et al. (2005) for an excellent survey. In this section we brie�y

summarize how we can use the methodology discussed in previous sections to estimate a class of

Markovian games. Similar to Bajari et al. (2008), we consider the same class of dynamic games de-

scribed in Aguirregabiria and Mira (2007), Bajari et al. (2007), Pakes et al. (2004) and Pesendorfer

and Schmidt-Dengler (2008), and allowing the observable state variable to have continuous compo-

nent. We refer the reader to our working paper version, Srisuma and Linton (2009), for a detailed

discussion.

First, note that Pesendorfer and Schmidt-Dengler�s (2008) results on the characterization (Propo-

sition 1) and the existence (Theorem 1) of the Markov perfect equilibrium can be readily extended to

this more general framework.5 To avoid repetition, we proceed directly to the policy value equation

for each player i, induced by the equilibrium best responses, f�igNi=1, which generate the observed
data. For any �, we have

Vi;� (sit) = E [ui;� (�i (sit) ; a�it; sit) jsit] + �E [Vi;� (sit+1) jsit] ;

where a�it denotes the usual notation of the actions of all other players except player i. Following

the arguments in Section 3, where xt now represents observed public information (to all the players

and econometricians), the policy value equation can be used to obtain its conditional counterpart

E [Vi;� (sit) jxt] = E [ui;� (�i (sit) ; a�it; sit) jxt] + �E [E [Vi;� (sit+1) jxt+1] jxt] ;
5This follows since: (Proposition 1) the arguments in the proof of their Proposition 1 is done pointwise on the

support of the observable state space; (Theorem 1) Their equation (11) (on page 909) becomes a continuous functional

equation in an in�nite dimensional space. We can appeal to �xed point theorems in in�nite dimensional spaces under

some weak smoothness conditions on the primitve functions (such as Schauder or Tikhonov �xed point theorems, see

Granas and Dugundji (2003)).
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where we utilize an analogue of the conditional independence assumption, in M1, for the multi-agent

case. The model implied choice speci�c value function for each player, denoted by vi;� (see below),

can then again be written as a linear transform of the solution to an integral equation (the conditional

policy value equation), namely

E [Vi;� (sit+1) jxt; ait] = E [E [Vi;� (sit+1) jxt+1] jxt; ait] ;

which can then be used to de�ne the model implied choice probabilities. More speci�cally, we de�ne

Pi;� (ajxt) =
Z
1 [�i;� (sit) = a] qi (d"itjxt) ;

where "it denotes a vector of player i�s private information, and under additive separability assump-

tion

�i;� (sit) = a, vi;� (a; xt) + "a;it � vi;� (a
0; xt) + "a0;it for all a0 2 A;

vi;� (a; x) = E [�i;� (a; a�it; xt) jxt = x; ait = a] + �iE [Vi;� (sit+1) jxt = x; ait = a] :

By assuming that the data is generated from a single Markov perfect equilibrium, the conditional

expectations (on the observable) are de�ned with respect to some particular equilibrium distributions

that are nonparametrically identi�ed. We can de�ne two-step estimators for the �nite dimensional

structural parameters from the estimates of fPi;�gNi=1, by feasible likelihood criterion function or other
minimum distance objective functions derived from

E [1 [ait = a]� Pi;� (ajxt) jxt] = 0 for all a 2 A and i 2 f1; : : : ; Ng when � = �0;

which are, precisely, the in�nite dimensional counterparts of the matrix equation (18) in Pesendorfer

and Schmidt-Dengler (2008).

In terms of the practical implementation of estimating the nonparametric functions in the �rst

stage, note that we can write the conditional policy value function in a familiar way

mi;� = ri;� + Lmi;�;

where (ri;�;L) are E [ui;� (�i (sit) ; a�it; sit) jxt] and the conditional expectation (integral) operator
representing the transition of the public information. By the same arguments used in Section 2.3,

L is a contraction map. Even if each player has distinct discounting factor, fLigNi=1, these integral
equations can be estimated and solved independently. Therefore the comments and discussions in

Section 3.4 directly apply to the game setting as well.
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6 Numerical Illustration

In this section we illustrate some �nite sample properties of our proposed estimator in a small scale

Monte Carlo experiment.

Design and Implementation:

We consider the decision process of an agent (say, a mobile store vender) who, in each period t,

has a choice to operate in either location A or B. The decision variable at takes value 1 if location

A is chosen, and 0 otherwise. The immediate payo¤ from the decision is

u (at; xt; "t) = ��0 (at; xt) + at"1;t + (1� at) "2;t;

where �� (at; xt) = �1atxt + �2 (1� at) (1� xt). Here xt denotes a publicly observed measure of the

demand determinant that has been normalized to lie between [0; 1]. The vector ("1;t; "2;t) represents

some non-persistant idiosyncratic private costs associated with each choice, which are distributed

as i.i.d. extreme value of type 1, that are not observed by the econometricians. To capture the

most general aspect of the decision processes discussed in the paper, the future value of xt+1 evolves

stochastically and its conditional distribution is a¤ected by the observables from the previous period

(at; xt). We suppose the transition density has the following form

fX0jX;A (x
0jx; a) =

(
�11 (x)x

0 + �12 (x) when a = 1

�21 (x)x
0 + �22 (x) when a = 0

:

We design our model to be consistent with a plausible scenario that future demand builds on existing

demand, which is driven by whether or not the vender was present at a particular location. In

particular, if the demand at location A is high and the vender is not present, the demand at location

A is more likely to be signi�cantly lower for the next period (and vice versa). We use the following

simple speci�c forms for f�ijg that display such behavior

�11 (x) = 2 (2x� 1) ; �12 (x) = 2 (1� x)

�21 (x) = 2 (1� 2x) ; �22 (x) = 2x
:

To introduce some asymmetry, we impose that the agent has underlying preference towards location

A, which is captured by the condition �01 > �02 > 0.

We set (�; �01; �02) to be (0:9; 1; 0:5) and use the �xed point method described in Rust (1996) to

generate the controlled Markovian process under the proposed primitives. The initial state is taken as

x1 = 1=2, we begin sampling each decision process after 1000 periods and consider T = 100; 500; 1000.

We conduct 1000 replications of each time length. For each T , we obtain our estimators by following

the procedure described in Section 3. To approximate the integral equation we partition [0; 1] by
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using 1000 equally-spaced grid points. Since the support of the observable state is compact, we need

to trim of values near the boundary. As an alternative, we employ a simple boundary corrected

kernel, see Wand and Jones (1994), based on a Gaussian kernel, namely

Kb
h (xt � x) =

8>><>>:
1
h
K
�
xt�x
h

�
=
R1
�x=hK (v) dv

1
h
K
�
xt�x
h

�
1
h
K
�
xt�x
h

� R (1�x)=h
�1 K (v) dv

if x 2 [0; h)
if x 2 (h; 1� h)

if x 2 (1� h; 1]

;

where K is the pdf of a standard normal. We consider three choices of bandwidth
�
h; h1=2; h3=2

�
,

where h = 1:06sT�1=5 and s denotes the standard deviation of the observed fxtg.

Results:

We report the summary statistics for the b�1 and b�2 in Table 1 and 2 respectively. The bias
(mean and median) and the standard deviation all decrease as the sample size increases across all

bandwidths. The ratio of the bias and standard deviation remain small even at larger sample size,

providing support that our estimators are consistent. The ratio of the scaled interquatile range (by a

factor 1:349) and the standard error are also close to 1, which is a trait of a normal random variable.

We also provide the estimated mean deviations of E [V�0 (st+1) jxt; at] for various values of xt when
at = 1 and 2 in Table 3 and 4 respectively. We �nd that the bias near the boundaries are larger

relative to the interior and the interquartile range of the estimates decrease with sample size across

all bandwidths. Generally the absolute values of the bias are small and decreasing as sample size

increases. However, the biases corresponding to the bandwidth h3=2 appear to not necessarily decrease

with sample sizes, especially closer to the boundaries. This could be due to a particular discretization

e¤ects.

In regards to the relations between the point and function estimators, since the conditional choice

probabilities only depend on the di¤erence between choice speci�c values, we consider the estimated

di¤erences in Figures 1 - 3. The �gures contain the graphs of the true and its mean di¤erences plotted

on the same scale, for di¤erent bandwidths, across di¤erent sample sizes. The plots show that the

bias is larger near the boundary, and they decrease as sample size increases for all bandwidths.

7 Conclusion

In this paper, we provide a method to estimate a class of Markov decision processes that allows for

continuous observable state space. The type of primitive conditions are provided for the inference

of the �nite and in�nite dimensional parameters in the model. Our estimation technique relies on

the convenient well-posed linear inverse problem presented by the policy value equation. It inherits
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the computational simplicity of Pesendorfer and Schmidt-Dengler (2008) that is independent of the

parameterization of the per period utility function. We also illustrate how this method can be

extended naturally to the estimation of Markovian games in a similar setting to that of Bajari et al.

(2008) Their identi�cation results directly apply here.

There are some practical aspects of our estimators worth exploring. Firstly, is the role of numerical

error brought upon by approximating the integral in the case that we have large sample size compared

to the purely nonparametric approximation. Second is to see how our estimator performs in practice

relative to discretization methods. Thirdly, some e¢ ciency bounds should be obtainable in the special

case of conditional logit assumption.
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Appendix A

In this section, we provide a set of high level assumptions (A1 - A6) and their consequences (C1 -

C4) of the nonparametric estimators described in Section 3. We outline the stochastic expansions

required to obtain the asymptotic properties of bm� and bg�. The high level assumptions are then
proved under the primitives of M1 - M3 and B1 - B8. Consequences are simple and their proofs are

omitted. In what follows, we refer frequently to Bosq (1998), Linton and Mammen (2005), Masry

(1996) and Robinson (1983), so for brevity, we denote their references by [B], [LM], [M] and [R]

respectively.

A.1 Outline of Asymptotic Approach

For notational simplicity we work on a Banach space, (C (X ) ; k�k), where X = XC � XD ,the

continuous part of X is a compact set [x+ "; x� "] for some arbitrarily small " > 0. We denote

B10, the analogous condition to B1 when we replace X by X . The approach taken here is similar to
[LM], who worked on the L2 Hilbert Space. The main di¤erence between our problem and theirs is,

after getting consistent estimates of (10), we require another level of smoothing (11) before plugging

it into the criterion function. The �rst part here follows [LM].

Assumption A1. Suppose that for some sequence �T = o (1):

sup
x2X

���� bL � L�m (x)��� = op (�T ) ;

i.e., we have, � bL � L�m = op (�T ) ;

for any m 2 C (X ).
Consequence C1. Under A1:��I � bL��1 � (I � L)�1�m = op (�T ) :

The rate of uniform approximation of the linear operator gets transferred to the inverse of (I � L).
This is summarized by C1 and is proven in [LM].

We supposed that br� (x)�r� (x) can be decomposed into the following terms with some properties.
Assumption A2. For each x 2X:

br� (x)� r� (x) = brB� (x) + brC� (x) + brD� (x) ; (25)
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where brC� ; brD� and brE� satisfy:
sup

(x;�)2X��

��brB� (x)�� = Op
�
T�2=5

�
with brB� deterministic; (26)

sup
(x;�)2X��

��brC� (x)�� = op
�
T�2=5+�

�
for any � > 0; (27)

sup
(x;�)2X��

��L (I � L)�1 brC� (x)�� = op
�
T�2=5

�
; (28)

sup
(x;�)2X��

��brD� (x)�� = op
�
T�2=5

�
: (29)

This is the standard bias+variance+remainder of local constant kernel estimates of the regression

function under some smoothness assumptions. The intuition behind (28), as provided in [LM], is that

the operator applies averaging to a local smoother and transforms it into a global average thereby

reducing its variance. These terms are used to obtain the components of bm� (x), for j = B;C;D, the

terms bmj
� (x) are solutions to the integral equations,

bmj
� = brj� + bLbmj

� (30)

and bmA
� , from writing the solution m� + bmA

� to the integral equation�
m� + bmA

�

�
= r� + bL �m� + bmA

�

�
: (31)

The existence and uniqueness of the solutions to (30) and (31) are assured, at least w.p.a. 1, under

the contraction property of the integral operator, so it follows from the linearity of
�
I � bL��1 that

bm� = m� + bmA
� + bmB

� + bmC
� + bmD

� :

These components can be approximated by simpler terms. De�ne also mB
� , as the solution to

mB
� = brB� + LmB

� : (32)

Consequence C2. Under A1 - A2:

sup
(x;�)2X��

�� bmB
� (x)�mB

� (x)
�� = op

�
T�2=5

�
; (33)

sup
(x;�)2X��

�� bmC
� (x)� rC� (x)

�� = op
�
T�2=5

�
; (34)

sup
(x;�)2X��

�� bmD
� (x)

�� = op
�
T�2=5

�
: (35)

(33) and (35) follow immediately from (26), (29) and C1. (34) follows from (28), A1 and C1, as we

can easily show that,  bL�I � bL��1 � L (I � L)�1 = op (�T ) :
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We next, also, approximate bmA
� by simpler terms, subtracting (10) from (31) yields

bmA
� =

� bL � L�m� + bLbmA
� : (36)

Assumption A3. For any x 2 X :� bL � L�m� (x) = brE� (x) + brF� (x) + brG� (x) ;
where brE� ; brF� and brG� satisfy:

sup
(x;�)2X��

��brE� (x)�� = Op
�
T�2=5

�
with brE� deterministic;

sup
(x;�)2X��

��brF� (x)�� = op
�
T�2=5+�

�
for any � > 0;

sup
(x;�)2X��

��L (I � L)�1 brF� (x)�� = op
�
T�2=5

�
;

sup
(x;�)2X��

��brG� (x)�� = op
�
T�2=5

�
:

These terms are obtained by decomposing the conditional density estimates (cf. A2), then proceed

as done previously, we de�ne bmj
� (x) for j = E;F;G as the unique solutions to the estimated integral

equation of (30), solving (36) we have,

bmA
� =

�
I � bL��1 � bL � L�m�

= bmE
� + bmF

� + bmG
� :

Such terms are asymptotically equivalent to more convenient terms (cf. C2), de�ne also mE
� as the

solution to the analogous integral equation of (32).

Consequence C3. Under A1 - A3:

sup
(x;�)2X��

�� bmE
� (x)�mE

� (x)
�� = op

�
T�2=5

�
;

sup
(x;�)2X��

�� bmF
� (x)� brF� (x)�� = op

�
T�2=5

�
;

sup
(x;�)2X��

�� bmG
� (x)

�� = op
�
T�2=5

�
:

C3 can be shown using the same reasonings used to obtain C2.

Combining these assumptions leads to Proposition 1 of [LM].

Proposition 1. Suppose that [A1 - A3] holds for some estimators br� and bL. De�ne bm� as any

solution of bm� = br� + bLbm�. Then the following expansion holds for bm�

sup
(x;�)2X��

�� bm� (x)�m� (x)�mB
� (x)�mE

� (x)� brC� (x)� brF� (x)�� = op
�
T�2=5

�
;
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where all of the terms above have been de�ned previously.

The uniform expansion for the nonparametric estimators required in [LM] ends here. However,

to obtain the uniform expansion of bg� de�ned in (19), we need another level of smoothing. Note that
the integral operator, H, has a di¤erent range,

H : C (X )! C (A�X) ;

where C (A�X) denotes a space of functions, say g (j; x), which are continuous on X for each j 2 A.
So the relevant Banach Space is equipped with the sup-norm over A �X, which we also denote by

k�k though this should not lead to any confusion. For notational simplicity, we �rst de�ne,

mB
� (x) = mB

� (x) +mE
� (x) ;

mC
� (x) = brC� (x) + brF� (x) ;

mD
� (x) = bm� (x)�m� (x)�mB

� (x)�mC
� (x) :

We next de�ne various components of the transformations (19), analogously to (30) and (32), for

j = B;C;D the terms bgj� are elements of the integral transform,
bgj� = bHmj

�;

gj� = Hmj
�;

and bgA� is de�ned by bHm� = g� + bgA� :
It follows from linearity of bH that

bg� = g� + bgA� + bgB� + bgC� + bgD� :
Assumption A4. Suppose that for some sequence �T as in A1:

sup
(x;a;�)2A�X��

���� bH�H�m� (x; a)
��� = op (�T ) ;

i.e.,
� bH�H�m = op (�T ) for any m 2 C (X ).
A4 assumes the desirable properties of the conditional density estimators (cf. A1 and A3).

Consequence C4. Under A1 - A4:

sup
(x;a;�)2A�X��

��bgB� (a; x)� gB� (a; x)
�� = op

�
T�2=5

�
;

sup
(x;a;�)2A�X��

��bgC� (a; x)� gC� (a; x)
�� = op

�
T�2=5

�
;

sup
(x;a;�)2A�X��

��bgD� (a; x)�� = op
�
T�2=5

�
:
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This follows immediately from A5 and the properties of the elements de�ned in mB
� (x).

Assumption A5. Suppose that:

sup
(x;a;�)2A�X��

��gC� (a; x)�� = op
�
T�2=5

�
:

A5 follows since the operator H is a global smooth, hence it reduces the variance of gC� .

As with bmA
� we can approximate bgA� by simpler terms.

Assumption A6. For any m 2 C (X ) and for each (a; x) 2 A�X:

bgA� (a; x) =
� bH�H�m� (x; j)

= bgE� (j; x) + bgF� (j; x) + bgG� (j; x) ;
where bgE� ; bgF� and bgG� satisfy:

sup
(x;a;�)2A�X��

��bgE� (x; a)�� = Op
�
T�2=5

�
with bgE� deterministic;

sup
(x;a;�)2A�X��

��bgF� (x; a)�� = op
�
T�2=5+�

�
for any � > 0;

sup
(x;a;�)2A�X��

��bgG� (x; a)�� = op
�
T�2=5

�
:

A6 follows from standard decomposition of the kernel conditional density estimator (cf. A3).

Proposition 2. Suppose that A1 - A6 holds for some estimators br�, bL and bH. De�ne bm� as

any solution of bm� = br� + bLbm� and bg� = bHbm�. Then the following expansion holds for bg�
sup

(x;a;�)2A�X��

��bg� (x; a)� g� (x; a)� gB� (x; a)� bgE� (x; a)� bgF� (x; a)�� = op
�
T�2=5

�
;

where all of the terms above have been de�ned previously, in particular gB� and bgE� are non-stochastic
and the leading variance terms is bgF� . This can be rewritten in a similar notation to (??).

gB� (x; a) = gB� (x; a) + bgE� (x; a) ;
gC� (x; a) = bgF� (x; a) ;
gD� (x; a) = bg� (x; a)� g� (x; a)� gB� (x; a)� gC� (x; a) :

A.2 Proofs of Theorems 1 and 2 and High Level Conditions A1 - A6

We assume B10 and B2 - B6 throughout this subsection. Set �T = T ��3=10, this rate is arbitrarily

close to the rate of convergence of 1-dimensional nonparametric density estimates when hT decays

at the rate speci�ed by B6. For the ease of notation, we assume that XD is empty. The presence of

discrete states do not a¤ect any of the results below, we can simply replace any formula involving the
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density (and analogously for the conditional density) f (dxt) by f
�
dxt; x

d
t

�
. We shall denote generic

constants by C0 that may take di¤erent values in di¤erent places. The uniform rate of convergence

proof of various components utilize some exponential inequalities found in [B] as done in [LM], the

details are deferred to Appendix B.

Proof of Theorem 1. We proceed by providing the pointwise distribution theory for bP (ajx),
for any a 2 A and x 2 int (X), and the functionals thereof. These are used to proof Theorem 1 and

2 and verify the high level conditions. bP (ajx) is the usual local constant regression estimator (or
equivalently, the conditional probability estimator).

bP (ajx)� P (ajx) = 1

T

TX
t=1

(1 [at = a]� P (ajx))Kh (xt � x) = bfX (x) ;
focusing on the numerator

1

T

TX
t=1

(1 [at = a]� P (ajx))Kh (xt � x) =
1

T

TX
t=1

(P (ajxt)� P (ajx))Kh (xt � x)

+
1

T

TX
t=1

ea;tKh (xt � x)

= A1;a;T (x) + A2;a;T (x) ;

where ea;t = 1 [at = a]� P (ajxt). The term A1;a;T (x) is dominated by the bias, by the usual change

of variables and Taylor�s expansion,

E [A1;a;T (x)] = E [(P (ajxt)� P (ajx))Kh (xt � x)]

=
1

2
�2h

2
T

�
2
@P (ajx)
@x

@fX (x)

@x
+
@2P (ajx)
@x2

fX (x)

�
+ o

�
h2T
�
:

Recall that E [ea;tjxt] = 0 for all a and t. We next compute the variance of A2;a;T (x), this is dominated
by the variances as covariance terms are of smaller order, e.g. see [M].

var (A2;a;T (x)) = var

 
1

T

TX
t=1

ea;tKh (xt � x)

!

=
1

T
var (ea;tKh (xt � x)) + o

�
1

ThT

�
=

1

T
E
�
�2a (xt)Kh (xt � x)

�
+ o

�
1

ThT

�
=

�2
ThT

�2a (x) fX (x) + o

�
1

ThT

�
;
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note that

�2a (x) = E
�
e2a;tjxt = x

�
= var (1 [at = a] jxt = x)

= P (ajx) (1� P (ajx)) :

For the CLT, Lemma 7:1 of [R] can be used repeated throughout this section, using Bernstein blocking

technique we obtain,p
ThT

�bP (ajx)� P (ajx)� 1
2
�2h

2
T�Pa (x)

�
=) N (0; !Pa (x)) ;

where

�Pa (x) = 2
@P (ajx)
@x

@fX(x)
@x

fX (x)
+
@P 2 (ajx)
@x2

; (37)

!Pa (x) = �2
�2a (x)

fX (x)
:

For any � 2 �, recall from (14) and (15)

br� (x) =X
a2A

�x;a;�

� bP (ajx)� ;
where,

�x;a;� (t) = t (u� (a; x) + log t) + ;

by mean value theorem (MVT),

�x;a;�

� bP (ajx)�� �x;a;�

�
P (ajx) + 1

2
�2h

2
T�Pa (x)

�
= � 0x;a;� (P (ajx))

�bP (ajx)� P (ajx)� 1
2
�2h

2
T�Pa (x)

�
+ op (1) ;

and

� 0x;a;� (t) = u� (a; x) + log t+ 1: (38)

By using MVT again, we can approximate �x;a;�
�
P (ajx) + 1

2
�2h

2
T�Pa (x)

�
more conveniently as fol-

lows,

�x;a;�

�
P (ajx) + 1

2
�2h

2
T�Pa (x)

�
= �x;a;� (P (ajx)) +

1

2
�2h

2
T�Pa (x) �

0
x;a;� (P (ajx)) + op

�
h2T
�
:
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To obtain the asymptotic distribution for br� (x), we now provide the joint distribution of n bP (ajx)o.
It follows immediately, following [R], from Cramér-Wold device that

p
ThT

0BB@
bP (1jx)� P (1jx)� 1

2
�2h

2
T�P1 (x)

...bP (Kjx)� P (Kjx)� 1
2
�2h

2
T�PK (x)

1CCA

=) N

0BBBBB@0;
�2

fX (x)

0BBBBB@
�21 (x) �22;1 (x) � � � �2K;1 (x)

�21;2 (x)
. . .

...
...

. . . �2K;K�1 (x)

�21;K (x) � � � �2K�1;K (x) �2K (x)

1CCCCCA

1CCCCCA ;

where �2j (x) = P (jjx) (1� P (jjx)) and �2j;k (x) = �2k;j (x) = �P (jjx)P (kjx) for j; k 2 A. There are
a couple of things to notice here, �rst there exist negative correlation between

n bP (jjx)o acrossA, and
the covariance matrix in the above display is rank de�cient due to the constraint that

P
j2A

bP (jjx) =
1 for any x 2 int (X). Using the information from the display above, we havep

ThT

�br� (x)� r� (x)�
1

2
�2h

2
T�r;�

�
=) N

�
0; !�x;� (x)

�
;

where

�r;� (x) =
X
j2A

�Pj (x) �
0
x;j;� (P (jjx)) ; (39)

!r;� (x) =
�2

fX (x)

 P
j2A
�
� 0x;j;� (P (jjx))

�2
�2j (x)

�2
P

j 6=k �
0
x;j;� (P (jjx)) � 0x;k;� (P (kjx))P (jjx)P (kjx)

!
; (40)

where
n
�Pj

o
j2A

and
�
� 0x;j;�

	
j2A are de�ned in (39) and (38) respectively. Note we can relate com-

ponents of the expansion of br� (x), in (25), to the terms above as follows,
r� (x) =

X
j2A

�x;j;� (P (jjx)) ; (41)

brB� (x) =
1

2
�2h

2
T�r;� (x) ; (42)

brC� (x) =
X
j2A

� 0x;j;� (P (jjx))
fX (x)

�
 
1

T

TX
t=1

ej;tKh (xt � x)

!
: (43)
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We next provide the statistical properties for bmA
� (x). First,

� bL � L�m� (x):� bL � L�m� (x) = �

Z
m� (x

0)
� bfX0jX (dx

0jx)� fX0jX (dx
0jx)
�

=
�

fX (x)

Z
m� (x

0)
� bfX;X (dx0; x)� fX;X (dx

0; x)
�

� �

fX (x)

� bfX (x)� fX (x)
�Z

m� (x
0) fX0jX (dx

0jx) + op
�
T�2=5

�
= B1;�;T (x) +B2;�;T (x) + op

�
T�2=5

�
:

To analyze B1;�;T (x), proceed with the usual decomposition of bfX0;X (x
0; x)� fX0;X (x

0; x) then inte-

grate it over, note that the integral reduces the variance to that of a 1 dimensional nonparametric

estimator, we have

B1;�;T (x) = BB
1;�;T (x) +BC

1;�;T (x) + op
�
T�2=5

�
;

where

BB
1;�;T (x) =

1

2
�2h

2
T�

Z �
m� (x

0)

fX (x)

�
@2fX0;X (x

0; x)

@x02
+
@2fX0;X (x

0; x)

@x2

��
dx0; (44)

BC
1;�;T (x) =

�

fX (x)

 
1

T � 1

T�1X
t=1

Z
m� (x

0)

 
Kh (xt+1 � x0)Kh (xt � x)

�E [Kh (xt+1 � x0)Kh (xt � x)]

!!
dx0; (45)

and it can be shown that

p
ThTB

C
1;�;T (x) =) N

�
0;

�2

fX (x)
�2

Z
(m� (x

0))
2
fX0jX (dx

0jx)
�
:

For B2;�;T (x), this is just the kernel density estimator of fX (x) multiplied by a non-stochastic term,

B2;�;T (x) = BB
2;�;T (x) +BC

2;�;T (x) + op
�
T�2=5

�
;

where

BB
2;�;T (x) = �1

2
�2h

2
T

@2fX (x)

@x2

�
�

fX (x)

Z
m� (x

0) fX0jX (dx
0jx)
�
; (46)

BC
2;�;T (x) = �

�
�

fX (x)

Z
m� (x

0) fX0jX (dx
0jx)
�
1

T

TX
t=1

(Kh (xt � x)� E [Kh (xt � x)]) ; (47)

and it can be shown thatp
ThTB

C
2;�;T (x) =) N

 
0; �2fX (x)

�
�

fX (x)

Z
m� (x

0) fX0jX (dx
0jx)
�2!

:

Combining these we have,

bm� (x) = m� (x) +mB
� (x) +mC

� (x) + op
�
T�2=5

�
;
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where

mB
� (x) = (I � L)�1

�
BB
1;�;T +BB

2;�;T + brB� � (x) ;
mC
� (x) = BC

1;�;T (x) +BC
2;�;T (x) + brC� (x) :

Note also that p
ThT

�
BC
1;�;T (x) +BC

2;�;T (x)
�
=) N

�
0;

�2�
2

fX (x)
var (m� (xt+1) jxt = x)

�
;

and

Cov
�p

ThT
�
BC
1;�;T (x) +BC

2;�;T (x)
�
;
p
ThTbrC� (x)� ! 0 as n!1:

This provides us with the pointwise theory for bm� for any x 2 int (X) and � 2 �.p
ThT

�bm� (x)�m� (x)�
1

2
�2h

2
T�m;� (x)

�
=) N (0; !m;� (x)) ;

where

�m;� (x) = (I � L)�1
�
�r;� + �L;�

�
(x) ;

!m;� (x) =
�2

fX (x)

�
�2var (m� (xt+1) jxt = x) + !r;� (x)

�
;

where �r;� and !r;� are de�ned in (39) and (40), and

�L;� (x) = �

0@ 1
fX(x)

R
m� (x

0)
�
@2fX0;X(x

0;x)

@x02 +
@2fX0;X(x

0;x)

@x2

�
dx0

�
@2fX (x)

@x2

fX(x)

R
m� (x

0) fX0jX (dx
0jx)

1A ; (48)

�r;�, !r;� are de�ned in (39) - (40). The proof of pairwise asymptotic independence across distinct x

is obvious.

Proof of Theorem 2. From the decomposition from Theorem 1 we obtain the pointwise

results for bg� (a; x). Similarly to the decomposition of � bL � L�m� (x), we have� bH�H�m� (x; a) =

Z
m� (x

0)
� bfX0jX;A (dx

0jx; a)� fX0jX;A (dx
0jx; a)

�
= C1;�;T (a; x) + C2;�;T (a; x) + op

�
T�2=5

�
:

The properties for C1;�;T and C2;�;T are closely related to that of B1;�;T and B2;�;T .

C1;�;T (a; x) = CB1;�;T (a; x) + CC1;�;T (a; x) + op
�
T�2=5

�
;

where

CB1;�;T (a; x) =
1

2
�2h

2
T

Z
m� (x

0)

fX;A (x; a)

�
@2fX0;X;A (x

0; x; a)

@x02
+
@2fX0;X;A (x

0; x; a)

@x2

�
dx0;

CC1;�;T (a; x) =
1

fX;A (x; a)

Z  
1

T � 1

T�1X
t=1

m� (x
0)

 
Kh (xt+1 � x0)Kh (xt � x)1 [at = a]

�E [Kh (xt+1 � x0)Kh (xt � x)1 [at = a]]

!!
dx0;
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and as in the case of BC
1;�;Tp

ThTC
C
1;�;T (a; x) =) N

�
0;

�2
fX;A (x; a)

Z
(m� (x

0))
2
fX0jX;A (dx

0jx; a)
�
:

Similarly for C2;�;T ,

CB2;�;T (a; x) = �1
2
�2h

2
T

@2fX;A (x; a)

@x2

�
1

fX;A (x; a)

Z
m� (x

0) fX0jX;A (dx
0jx; a)

�
;

CC2;�;T (a; x) = �
�

1

fX;A (x; a)

Z
m� (x

0) fX0jX;A (dx
0jx; a)

�
1

T

TX
t=1

 
Kh (xt � x)1 [at = a]

�E [Kh (xt � x)1 [at = a]]

!
;

and p
ThTC

C
2;�;T (a; x) =) N

�
0;

�2
fX;A (x; a)

Z
(m� (x

0))
2
fX0jX;A (dx

0jx; a)
�
:

Combining these we have,

bg� (x; a) = g� (x; a) + gB� (x; a) + gC� (x; a) + op
�
T�2=5

�
;

where

gB� (x; a) = CB1;�;T (a; x) + CB2;�;T (a; x) +HbrB� (a; x) ;
gC� (x; a) = CC1;�;T (a; x) + CC2;�;T (a; x) :

This provides us with the pointwise distribution theory for bg for any x 2 int (X) ; j 2 A and � 2 �.p
ThT

�bg (x; a)� g (x; a)� 1
2
�2h

2
T�g;� (x; a)

�
=) N (0; !g;� (x; a)) ;

where,

�g;� (a; x) = H (I � L)�1
�
�r;� + �L;�

�
(x; a) + �H;� (x; a) ;

!g;� (a; x) =
�2

fX;A (a; x)
var (m� (xt+1) jxt = x; at = j) ;

�r;� and �L;� are as de�ned in the proof of Theorem 1, and

�H;� (a; x) =
1

fX;A (x; a)

Z
m� (x

0)

�
@2fX0;X;A (x

0; x; a)

@2x0
+
@2fX0;X;A (x

0; x; a)

@2x

�
dx0 (49)

�
@2fX;A(x;a)

@2x

fX;A (x; a)

Z
m� (x

0) fX0jX;A (dx
0jx; a) :

Pairwise asymptotic independence, across distinct x, completes the proof.
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Proof of A1. It su¢ ces to show that

sup
(x0;x)2X�X

��� bfX0;X (x
0; x)� fX0;X (x

0; x)
��� = op (�T ) ;

sup
x2X

��� bfX (x)� fX (x)
��� = op (�T ) :

These uniform rates are bounded by the rates for the bias squared and the rates of the centred

process. The former is standard, and holds uniformly over X �X (and X ). See Appendix B, where
proof of A1 falls under Case 1.

Proof of A2. The components for the decomposition have been provided by (41) - (43). By

uniform boundedness of �Pa and �x;a;� over A � X � � and triangle inequalities, the order of the

leading bias and remainder terms are as stated in (26) and (29) respectively. For the stochastic term,

we can utilize the exponential inequality, see Case 2 of Appendix B. We next check (28). [LM] use

eigen-expansion to construct the kernel of the new integral operator and showed that it had nice

properties in their problem. We use the Neumann�s series to construct our kernel, for any � 2 C (X )

L (I � L)�1 � =
1X
j=1

Lj�; (50)

where Lj represents a linear operator of a j-step ahead predictor with discounting, this follows from
Chapman-Kolmogorov equation for homogeneous Markov chains, for � > 1

L�� (x) = ��
Z
� (x0) f(�) (dx

0jx) (51)

f(�) (xt+� jxt) =

Z
fX0jX (xt+� jxt+��1)

��1Y
k=1

fX0jX (dxt+��kjxt+��k�1) ;

where f(�) (dxt+� jxt) denotes the conditional density of � -steps ahead. First, we note that L (I � L)�1 � 2
C (X ), this is always true since for any � 2 C (X ) and x 2 X since:

��L (I � L)�1 � (x)�� =

�����
1X
�=1

��
Z
� (x0) f(�) (dx

0jx)
�����

�
1X
�=1

��
Z
f(�) (dx

0jx) k�k

� �

1� �
k�k

< 1:

We denote the kernel of the integral transform (50) by the limit, ', of the partial sum, 'J ,

'T (x
0; x) =

TX
�=1

��f(�) (x
0jx) ; (52)
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where ' is continuous on X � X . This is easy to see since f(�) is continuous and is uniformly
bounded for all j by sup(x0;x)2X�X jf (x0jx)j, by completeness, 'J converges to a continuous function
(with Lipschitz constant no larger than �

1�� sup(x0;x)2X�X jf (x
0jx)j). To proof (28), for details see

Case 3 of Appendix B, we apply exponential inequality to bound

Pr

 
1

T

�����
TX
t=1

e�;t� (xt; x)

����� > �T

!
; (53)

for some positive sequence, �T = o
�
T�2=5

�
, where � (xt; x) is de�ned as

� (xt; x) =

Z
Kh (xt � x0)

fX (x0)
' (dx0; x) (54)

=
' (xt; x)

fX (xt)
+O

�
h2T
�
;

and the latter equality holds uniformly on X .
Proof of A3. Following the decomposition of bf (x0jx) we obtain the leading bias and variance

terms are sum of (44) and (46), and, (45) and (47) respectively. The results rates of convergence

follow similarly to the proof of A2.

Proof of A4. This is essentially the same as proof of A1.

Proof of A5. Notice that mC
� consists of brC� and brF� . We need to show,
sup

(j;x)2A�X

��HbrC� (j; x)�� = op
�
T�2=5

�
sup

(j;x)2A�X

��HbrF� (j; x)�� = op
�
T�2=5

�
:

The proof follows from exponential inequalities, see Appendix B.

Proof of A6. This is essentially the same as proof of A3.

A.3 Proofs of Theorems 3 - 5

We begin with two lemmas for the uniform expansion of some partial derivatives of bm� and bg�.
Lemma 1: Under conditions B10, B2 - B6 hold. Then the following expansion holds for k = 0; 1; 2

and j = 1; : : : ; L;

max
1�j�L

sup
(x;�)2X��

�����@k bm� (x)

@�kj
� @km� (x)

@�kj
� @kmB

� (x)

@�kj
� @kmC

� (x)

@�kj

����� = op
�
T�2=5

�
;

where @km�

@�k
is de�ned as the solution to

@km�

@�kj
=
@kr�

@�kj
+ L@

km�

@�kj
; (55)
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and @k bm�

@�kj
de�ned as the solution to the analogous empirical integral equation. Standard de�nition

for partial derivative applies for @
kmb

�(x)

@�kj
with b = B;C. Notice, when k = 0, this coincides with the

terms previously de�ned in Proposition 1. Further,

max
1�j�L

sup
(x;�)2X��

�����@kmB
� (x)

@�kj

����� = Op
�
T�2=5

�
with

@kmB
� (x)

@�k
deterministic;

max
1�j�L

sup
(x;�)2X��

�����@kmC
� (x)

@�kj

����� = op
�
T ��2=5

�
for any � > 0:

Proof of Lemma 1. Comparing integral equations in (10) and (55), we notice that, these are

just the integral equations with the same kernel but di¤erent intercepts. Since �x;j;�, �x;j;� and m�

are twice continuously di¤erentiable in � on � over A�X, Dominated Convergence Theorem (DCT)
can be utilized throughout, all arguments used to verify the de�nition of @

km�(x)

@�kj
and their uniformity

results analogous to A2 -A3 follow immediately.

Lemma 2: Under conditions B10, B2 - B6 hold. Then the following expansion holds for k = 0; 1; 2

and j = 1; : : : ; L;

max
1�j�L

sup
(x;j;�)2A�X��

�����@kbg� (x; a)@�kj
� @kg� (x; a)

@�kj
� @kgB� (x; a)

@�kj
� @kgC� (x; a)

@�kj

����� = op
�
T�2=5

�
;

where all of the terms above are de�ned analogously to those found in Lemma 1 and, for k = 1; 2

max
1�j�L

sup
(x;j;�)2A�X��

�����@kgB� (x; a)@�kj

����� = Op
�
T�2=5

�
with

@kgB� (x; a)

@�kj
deterministic;

max
1�j�L

sup
(x;j;�)2A�X��

�����@kgC� (x; a)@�kj

����� = op
�
T ��2=5

�
for any � > 0:

Proof of Lemma 2: Same as the proof of Lemma 1.

Proof of Theorem 3: We �rst proceed to show the consistency result of the estimator.

Consistency.

Consider any estimator �T of �0 that asymptotically maximizes bQT (�):
QT (�T ) � sup

�2�
QT (�)� op (1) :

Under B1 and B9, by standard arguments for example see McFadden and Newey (1994), consistency

of such extremum estimators can be obtained if we have

sup
�2�

��� bQT (�)�Q (�)
��� = op (1) : (56)
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By triangle inequality, (56) is implied by

sup
�2�

jQT (�)�Q (�)j = op (1) (57)

sup
�2�

��� bQT (�)�QT (�)
��� = op (1) : (58)

For (57), since q : A �X � � ! R is continuous on the compact set X � �, for any a 2 A, hence

by Weierstrass Theorem

max
a2A

sup
x2X;�2�

jq (j; x; �; g�)j <1: (59)

This ensures that E jq (at; xt; �; v�)j < 1, and by the LLN for ergodic and stationary processes we
have

QT (�)
p! Q (�) for each � 2 �:

The convergence above can be made uniform sinceQT is stochastic equicontinuous andQ is uniformly

continuous by DCT, with a majorant in (59). To proof (58) we partition bQT (�) � QT (�) into two

components

bQT (�)�QT (�) =
1

T

TX
t=1

ct;T (q (at; xt; �; bg�)� q (at; xt; �; g�)) +
1

T

TX
t=1

(1� ct;T ) q (at; xt; �; bg�) ;
where the second term is op (1). This follows since, we denote 1� ct;T by dt;T , ,����� 1T

TX
t=1

dt;T q (at; xt; �; bg�)
����� � max

a2A
sup

x2X;�2�
jq (a; x; �; g�)j

1

T

TX
t=1

dt;T

= op (1) :

The �rst inequality holds w.p.a. 1 and the equality is the result of dt;T = op (#T ) for any rate

#T !1. To proof (58), now it su¢ ces to show,

max
a2A

sup
x2X;�2�

jq (a; x; �; bg�)� q (a; x; j; �; g�)j = op (1) :

Recall that

q (j; x; �; bg�)� q (j; x; �; g0) = bv� (x; a)� v� (x; a) + log

�Pea2A exp (v� (ea; x))Pea2A exp (bv� (ea; x))
�
;

v� (x; a) = u� (x; a) + g� (x; a) ;bv� (x; a) = u� (x; a) + bg� (x; a) :
All the listed functions are in C (X ). We have shown earlier that for some �T = o (1)

max
a2A

sup
x2X;�2�

jbg� (x; a)� g� (x; a)j = op (�T ) ;
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so we have uniform convergence for bv to v at the same rate. We know for any continuously di¤eren-
tiable function � (in this case, exp (�) and log (�)), by MVT,

max
a2A

sup
x2X;�2�

j� (bv� (a; x))� � (v� (a; x))j = op (�T ) :

So we have

sup
x2X;�2�

�����Xea2A exp (bv� (ea; x))�
X
ea2A exp (v� (ea; x))

����� = op (1) ;

and since we have, at least w.p.a. 1, exp (bv� (ea; x)) and exp (v� (ea; x)) are positive a.s.����Pea2A exp (v� (ea; x))Pea2A exp (bv� (ea; x)) � 1
���� = ���� 1Pea2A exp (bv� (ea; x))

����
�����Xea2A exp (v� (ea; x))�

X
ea2A exp (bv� (ea; x))

����� ;
and by Wierstrass Theorem, w.p.a. 1,

min
a2A

inf
x2X;�2�

exp (bv� (a; x)) > 0;
hence we have

sup
x2X;�2�

����Pea2A exp (v� (ea; x))Pea2A exp (bv� (ea; x)) � 1
���� = op (1) :

The proof of (58) is completed once we apply another mean value expansion, as done previously, to

obtain

sup
x2X;�2�

����log�Pea2A exp (v� (ea; x))Pea2A exp (bv� (ea; x))
����� = op (1) :

Asymptotic Normality

Consider the �rst order condition

@ bQT �b��
@�

= op (1) ;

from MVT we have

op

�p
T
�
=
p
T
@ bQT (�0)

@�
+
@2 bQT ���
@�2

p
T
�b� � �0

�
:

We show that for any sequence �T ! 0 there exists some positive C such that

inf
k���0k<�T

�min

 
�@

2 bQT (�)
@�@�>

!
> C + op (1) (60)

p
T
@ bQT (�0)

@�
= Op (1) (61)

This implies p
T
�b� � �0

�
= Op (1) :

41



To proof (60), we �rst show

sup
k���0k<�T

@2 bQT (�)@�@�>
� E

�
@2q (at; xt; �; g�)

@�@�>

� = op (1) : (62)

Since the second derivative of q : A�X � � ! R is continuous on the compact set X � � and for
each a 2 A, standard arguments for uniform convergence implies that

sup
k���0k<�T

@2QT (�)@�@�>
� E

�
@2q (at; xt; �; g�)

@�@�>

� = op (1) :

By triangle inequality, (62) will hold if we can show,

sup
k���0k<�T

@2 bQT (�)@�@�>
� @2QT (�)

@�@�>

 = op (1) :

This is similar to showing (58), as the above condition is implied by,

max
a2A

sup
x2X;k���0k<�T

@2q (at; xt; �; bg�)@�@�>
� @2q (at; xt; �; g�)

@�@�>

 = op (1) : (63)

The expressions for the score of q is,

@q (at; xt; �; g�)

@�
=
@v� (at; xt)

@�
�

Pea2A
�
@v�(ea;xt)

@�

�
exp (v� (ea; xt))Pea2A exp (v� (ea; xt)) ; (64)

and for the Hessian

@2q (at; xt; �; g�)

@�@�>
=

@2v� (at; xt)

@�@�>
�

Pea2A
�
@2v�(ea;xt)
@�@�>

+ @v�(ea;xt)
@�

@v�(ea;xt)
@�>

�
exp (v� (ea; xt))Pea2A exp (v� (ea; xt))

+

Pea2A @v�(ea;xt)
@�

@v�(ea;xt)
@�>

exp (v� (ea; xt))2�Pea2A exp (v� (ea; xt))�2 :

Proceed along the same line of arguments for proving (58), we show (63) holds by tedious but straight-

forward calculations. Essentially we need uniform convergence of the following partial derivatives,

max
a2A;1�j�q

sup
x2X;�2�

�����@kbv� (j; x)@�kj
� @kv� (j; x)

@�kj

����� = op (1) for k = 0; 1; 2; (65)

(63) follows from repeated mean value expansions as done in the proof of (58). The uniform conver-

gence in (65) follows from Lemma 1 and 2, this implies (60).
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For (61),
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T
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dt;T
@q (at; xt; �0; g�0)

@�

= D1;T +D2;T +D3;T ;

The termD1;T is asymptotically normal with mean zero and �nite variance by the CLT for stationary

and geometric mixing process, p
TD1;T =) N (0;�1) ;

where

�1 = E

"
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Note that E
�
@q(at;xt;�0;g�0)

@�

�
= 0 by de�nition of �0. Next we show that D2;T also converges to a

normal vector at the rate 1=
p
T . Consider the j-th element of D2;T , using the expression from the

score function de�ned in (64),

(D2;T )j =
1p
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linearizing,
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1p
T

TX
t=1

ct;T

�
@bv�0 (at; xt)

@�j
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X
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where

 1 (ea; xt) = P (eajxt) ; (66)

 2;j (ea; xt) = P (eajxt) @v�0 (ea; xt)
@�j

; (67)

and the remainder terms are of smaller order since our nonparametric estimates converge uniformly

to the true at the rate faster than T�1=4 on the trimming set, as proven in Theorem 1 and 2.

The asymptotic properties of these terms are tedious but simple to obtain. We utilize the pro-

jection results and law of large numbers for U-statistics, see Lee (1990). We also note that all of

the relevant kernels for our statistics are uniformly bounded, along with the assumption [B1], this

ensures the residuals from the projections can be ignored. Now we give some details for deriving the

distribution of 1p
T

PT
t=1 (E1;t;T )j. First we linearize

@kbg�0
@�kj

� @kg�0
@�kj

for k = 0; 1,

@kbg�0
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� @kg�0
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@kbr�0
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!
;

this expansion is valid, uniformly on the trimming set, in spite of the scaling of order
p
T . Consider

the normalized sum of
� bH�H� @km�0

@�kj
, with further linearization, see the decomposition bL� L and
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bH�H in the proof of [A1], we can obtain the following U-statistics, scaled by
p
T , representation,
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Hoe¤ding (H-)decomposition provides the following as leading term, disposing the trimming factor,

1p
T
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@m�0 (xt+1)
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� E
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���� xt; at�� : (68)

To obtain the projection of the second term is more labor intensive. We �rst split it up into two

parts,
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:

The summands of the �rst term takes the following form
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Z 0@ R @m�0
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� bfX0X (dx
00; x0)� fX0X (dx

00; x0)
�

� bfX(x0)�fX(x0)
fX(x0)

E
h
@m�0

(xt+2)

@�j

��� xt+1 = x0
i 1A fX0jX;A (dx

0jxt; at) ;

with standard change of variable and usual symmetrization, this leads to the following kernel for the

U-statistic,
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The leading term from H-decomposition leads to the following centered process
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T
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notice the conditional expectation term is a two-step ahead predictor, zero mean follows from sta-

tionarity assumption and the law of iterated expectation. As for the second part of the second term,

using the Neumann series representation, see (50) and (51), the kernel of the relevant U-statistics is,

�

2

0@ ct;T
@m�0

(xs+1)

@�j

R '(xsjx0)
fX(xs)

f 0XjX;A (dx
0jxt; at)� ct;T

P1
�=1 �

�E
h
E
h
@m�0

(xt+�+2)

@�j

��� xt+1i��� xt; ati
+cs;T

@m�0
(xt+1)

@�j

R '(xtjx0)
fX(xt)

f 0XjX;A (dx
0jxs; as)� cs;T

P1
�=1 �

�E
h
E
h
@m�0

(xs+�+2)

@�j

��� xs+1i��� xs; asi
1A

��
2

0@ ct;TE
h
@m�0

(xs+1)

@�j

��� xsi R '(xsjx0)
fX(xs)

f 0XjX;A (dx
0jxt; at)� ct;T

P1
�=1 �

�E
h
E
h
@m�0

(xt+�+2)

@�j

��� xt+1i��� xt; ati
+cs;TE

h
@m�0

(xt+1)

@�j

��� xti R '(xtjx0)
fX(xt)

f 0XjX;A (dx
0jxs; as)� cs;T

P1
�=1 �

�E
h
E
h
@m�0

(xs+�+2)

@�j

��� xs+1i��� xs; asi
1A ;

where ' is de�ned as the limit of discounted sum of the conditional densities, see (52). The projection

of the U-statistic with the above kernel yields,
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The last term of 1p
T
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t=1 (E1;t;T )j can be treated similarly, recall we have
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:

Ignoring the bias term, that is negligible under assumptions B6 and B7,
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Normalizing the projection of the corresponding U-statistics obtains
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The same can be done to the remaining term, in particular we obtain
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Collecting (68) - (72), for k = 1,we obtain the leading terms of 1p
T

PT
t=1 (E1;t;T )j. For

1p
T
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t=1 (E2;t;T )j

and 1p
T

PT
t=1 (E3;t;T )j, we again use the projection technique of the U-statistics to obtain their leading

terms. We gave a lot of details for the former case as remaining terms in (D2;T ) can be treated in a

similar fashion. In particular, it is simple to show that the projections of various relevant U-statistics,

de�ned below with some elements $k 2 C (X) ; &k 2 C (A�X) and ea 2 A, have the following linear
representation:
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In correspondence of (Ek+1;t;T )j for k = 1; 2, we have in mind
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Notice that leading terms from all the projections above are mean zero processes. Collecting these

terms, lots of covariance. Clearly 1p
T

PT
t=1 (Ek;t;T )j = Op (1) for k = 1; 2; 3 and j = 1; : : : ; q, this

ensures the root-T consistency b�. The term D3;T is op (1) since
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�
:

Proof of Theorem 4 and 5: Under the assumed smoothness assumptions, the results simply

follow from MVT.

Appendix B

We now show various centered processes in the previous section converge uniformly at desired rates

on a compact set X. We outline the main steps below and proof the results for relevant cases. The

methodology here is similar to [LM] who employed the exponential inequality from [B] for various

quantities similar to ours.

Consider some process lT (x) = 1
T

P
l (xt; x), where l (xt; x) has mean zero. For some positive

sequence, �T , converging monotonically to zero, we �rst show that jlT (x)j = op (�T ) pointwise on X,

then we use the continuity property of l (xt; x) to show that this rate of convergence is preserved

uniformly over X.

To obtain the pointwise rates, specializing Theorem 1.3 of [B], we have the following inequality.

Pr (jlT (x)j > �T ) � 4 exp

�
� �2TT
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�
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4bT
�T
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��
T 1��

2

��
� exp (�G1;T ) +G2;T ;

for some

� 2 (0; 1) ; (73)
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!
;

v2 (�) = var

0B@ 1j
T�

2
+ 1
k
j
T�

2
+1
kX

t=1

l (xt; x)

1CA+ bT �T
2

:

To have the �rst term converging to zero, at an exponential rate, we need G1;T ! 1. The main
calculation here is the variance term in v2. Following [M], we can generally show that the uniform

order of such term comes from the variances and the covariances terms are of smaller order. We
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note that the bounds on these variances are independent on the trimming set. For our purposes,

the natural choice of �2T often reduces us to choosing � to satisfy b�T = o
�
�2TT

�
�
. The rate of

G2;T is easy to control since all of the quantities involved increase (decrease) at a power rate, the

mixing coe¢ cient can be made to decay su¢ ciently fast so G2;T = O (T��) for some � > 0, hence

Pr (jlT (x)j > �T ) = O (T��).

To obtain the uniform rates over X , compactness implies there exist an increasing number, QT ,
of shrinking hyper-cubes fIQT g whose length of each side is f�Tg with centres

�
xQT

	
. These cubes

cover X , namely for some C0 and d, �dTQT � C0 <1: In particular, we will have QT grow at a power

rate in our applications. Then we have

Pr

�
sup
x
jlT (x)j > �T

�
� Pr

�
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1�q�QT
jlT (xq)j > �T

�
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1�q�QT
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x2Iq

jlT (x)� lT (xq)j > �T

!
= G3;T +G4;T ;

where G3;T = O (QTT
��) by Bonferroni Inequality. Provided the rate of decay of the mixing co-

e¢ cient, i.e. �, is su¢ ciently large relative to the rate QT grows we shall have QT = o (T �). For

the second term, since the opposing behavior of (�T ; QT ) is independent of the mixing coe¢ cient,

max1�q�QT supx2Iq jlT (x)� lT (xq)j = o (�T ) can be shown using Lipschitz continuity when the hyper

cubes shrink su¢ ciently fast.

Before we proceed with the speci�c cases we validate our treatment of the trimming factor. The

pointwise rates are clearly una¤ected by bias at the boundary so long x 2 int (X). The technique
used to obtain uniformity also accommodates expanding space X , so long we use the sequence fcTg
to satisfy condition stated in [B9]. The uniform rate of convergence is also una¤ected, when replace

X with XT , since the covering of an expanding of a compact subsets of a compact set can still grow

(and shrink) at the same rate in each of the cases below. Therefore we could replace X everywhere

by XT .

Combining the results of uniform convergence of the zero mean processes and their biases, the

uniform rates to various quantities in the previous section can now be established. We note that

the treatment to allow for additional discrete observable states only requires trivial extension. We

provide illustrate this for the �rst case of kernel density estimation, and for brevity, thenceforth

assume that we only have purely continuous observable state variables.

Case 1. Here we deal with density estimators such as bfX (x) ; bfX0;X (x
0; x) and bfX0;X;A (x

0; x; j) :

We �rst establish the pointwise rate of convergence of a de-meaned kernel density estimator.

lT (x) = bfX (x)� E bfX (x) ;
l (xt; x) =

d�1Y
l=0

Kh (xt�l � xl+1)� E
d�1Y
l=0

Kh (xt�l � xl+1) :
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The main elements for studying the rate of G1;T are

$ =
1p
Thd

;

�T = T �$ for some � > 0;

bT = O
�
h�d
�
;

v2
�
T �
�
= O

�
$2T 1�� _ T �$h�d

�
:

We obtain from simple algebra

G1;T = O

�
T 2�T �

T 1�� + T �T 1=2h�d=2

�
:

As mentioned in the previous section, we have d = 2 and h = O
�
T�1=5

�
. This means �T = T ��3=10,

and if � 2 (7=10; 1) then we have G1;T !1 . Clearly, the same choice of � will su¢ ce for d = 1 as

well.

To make this uniform on XT , with product kernels and the Lipschitz continuity of K, we have

for any (x; xq) 2 Iq,
jKh (xt � x)�Kh (xt � xq)j �

C1
h3
�T :

So it follows that
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�
T��=2
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�
:

De�ne QT = T � , for some � > 0, this requires 9=5 < � < �.

We can allow for additional discrete control variable and/or observable state variables. As an

illustration, consider the density estimator of one continuous random variable and some discrete

random variable, we have

lT (x) = bfXC ;XD (xc; xd)� E bfXC ;XD (xc; xd) ;

l (xt; x) = Kh (xc;t � xc)1 (xd;t = xd)� EKh (xc;t � xc)1 (xd;t = xd) :

Same rates as the purely continuous case apply. For the pointwise part, the variance is clearly of the

same order. For the bounds on the uniform rates observe that,

jKh (xc;t � xc)1 (xd;t = xd)�Kh (xc;t � xqc)1 (xd;t = xd)j � jKh (xc;t � xc)�Kh (xc;t � xqc)j :

Same reasoning also applies for the kernel estimator of the density of the control and observable state

variables.
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Case 2. Here we deal with brC (x) :
l (xt; x) =

e�;tKh (xt � x)

fX (x)
:

Since fe�;Tg is uniformly bounded (a.s.) it follows, as shown in Case 1, the choice � 2 (3=5; 1) will
do to have G1;T !1.
To make this uniform on XT , by boundedness of fe�;Tg, Lipschitz continuity of K; f and their

appropriate bounds, we have for any (x; xq) 2 Iq,

jKh (xt � x)�Kh (xt � xq)j �
C2
h2
�T :

So it follows that

��1T max
1�q�QT

sup
x2Iq

jlT (x)� lT (xq)j = O

�
T��

T ��7=10

�
= o (1) ;

for some � > 0, this requires 7=10 < � < �.

Case 3. Here we deal with L (I � L)�1 brC� (x) :
l (xt; x) = e�;t� (xt; x) ;

where the de�nition of � is provided in (54). Using Billingsley�s Inequality, it is straightforward to

show that with the additional smoothing, the variance of lT is of parametric rate uniformly on XT .

Selecting � 2 (1=2; 1) will yield G1;T !1 for Pr
�
jlT (x)j > T�2=5

�
= o (1), for any x 2 XT .

To make this uniform on XT , by boundedness of fe�;Tg and Lipschitz continuity of ', we have
for any (x; xq) 2 Iq,

je�;t� (xt; x)� e�;t� (xt; xq)j � C3�T :

So it follows that

��1T max
1�q�QT

sup
x2Iq

jlT (x)� lT (xq)j = O

�
T��

T�2=5

�
;

for some � > 0, this requires 2=5 < � < �.

Case 4. Here we deal with mC
1;� (x) :

lT (x) =
�

fX (x)

Z � bfX0;X (x
0; x)� E bfX0;X (x

0; x)
�
m� (x

0) dx0:

As mentioned in the previous section, under our smoothness assumptions, we have uniformly on XT ,Z bfX0;X (x
0; x)m� (x

0) dx0 =
1

T � 1

T�1X
t=1

Kh (Xt � x)m� (Xt+1) +O
�
h2
�
:

The exact same choices found in Case 2 apply.
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T bandwidth bias mbias std iqr mse

100 h1=2 0.0591 0.0584 0.4151 0.4244 0.1758

h 0.0385 0.0351 0.4079 0.4140 0.1678

h3=2 0.0239 0.0216 0.4029 0.4020 0.1629

500 h1=2 0.0530 0.0492 0.1752 0.1713 0.0335

h 0.0306 0.0257 0.1712 0.1665 0.0303

h3=2 0.0193 0.0143 0.1694 0.1643 0.0291

1000 h1=2 0.0408 0.0432 0.1249 0.1248 0.0173

h 0.0184 0.0203 0.1224 0.1208 0.0153

h3=2 0.0082 0.0098 0.1212 0.1189 0.0147

Table 1: Summary statistics for b�1. h = 1:06s(T )�1=5 is the bandwidth used in the nonparametric
estimation, s = denotes the standard deviation of fxtgTt=1.

T bandwidth bias mbias std iqr mse

100 h1=2 0.0806 0.0543 0.4806 0.4576 0.2374

h 0.0606 0.0338 0.4913 0.4626 0.2450

h3=2 0.0479 0.0193 0.4974 0.4658 0.2497

500 h1=2 0.0619 0.0544 0.2033 0.1993 0.0452

h 0.0394 0.0328 0.2078 0.2062 0.0447

h3=2 0.0290 0.0224 0.2104 0.2085 0.0451

1000 h1=2 0.0434 0.0375 0.1443 0.1444 0.0227

h 0.0205 0.0150 0.1472 0.1512 0.0221

h3=2 0.0107 0.0048 0.1484 0.1527 0.0221

Table 2: Summary statistics for b�2. h = 1:06s(T )�1=5 is the bandwidth used in the nonparametric
estimation, s = denotes the standard deviation of fxtgTt=1.
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Values of x

NT bandwidth 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

100 h1=2 0.0192 0.0134 0.0088 0.0050 0.0013 -0.0027 -0.0077 -0.0139 -0.0213

(iqr) 0.0206 0.0151 0.0119 0.0101 0.0092 0.0104 0.0114 0.0146 0.0174

h 0.0067 0.0039 0.0031 0.0027 0.0017 0.0003 -0.0016 -0.0047 -0.0098

(iqr) 0.0341 0.0254 0.0226 0.0211 0.0213 0.0218 0.0202 0.0227 0.0264

h3=2 -0.0027 -0.0018 0.0003 0.0019 0.0022 0.0019 0.0016 0.0006 -0.0017

(iqr) 0.0466 0.0381 0.0363 0.0331 0.0343 0.0337 0.0330 0.0328 0.0350

500 h1=2 0.0151 0.0096 0.0058 0.0029 0.0005 -0.0020 -0.0052 -0.0097 -0.0159

(iqr) 0.0117 0.0096 0.0077 0.0060 0.0058 0.0067 0.0074 0.0089 0.0107

h 0.0027 0.0006 0.0002 0.0001 -0.0001 -0.0003 -0.0003 -0.0003 -0.0025

(iqr) 0.0184 0.0160 0.0145 0.0130 0.0119 0.0136 0.0141 0.0148 0.0163

h3=2 -0.0039 -0.0029 -0.0022 -0.0009 -0.0003 0.0006 0.0015 0.0034 0.0043

(iqr) 0.0253 0.0227 0.0214 0.0213 0.0193 0.0220 0.0209 0.0205 0.0213

1000 h1=2 0.0131 0.0082 0.0049 0.0026 0.0006 -0.0015 -0.0043 -0.0084 -0.0142

(iqr) 0.0092 0.0075 0.0060 0.0049 0.0045 0.0051 0.0060 0.0076 0.0091

h 0.0006 -0.0005 -0.0005 0.0000 0.0004 0.0004 0.0004 0.0005 -0.0009

(iqr) 0.0142 0.0120 0.0116 0.0102 0.0099 0.0106 0.0107 0.0120 0.0138

h3=2 -0.0050 -0.0037 -0.0027 -0.0009 0.0004 0.0012 0.0022 0.0036 0.0045

(iqr) 0.0196 0.0174 0.0177 0.0175 0.0156 0.0167 0.0160 0.0178 0.0180

Table 3: Estimated mean deviation from the choice speci�c expected value

E [V�0 (st+1) jxt = x; at = 1] for various values of x 2 [0; 1] and its corresponding interquartile

range. h = 1:06s(T )�1=5 is the bandwidth used in the nonparametric estimation, s = denotes the

standard deviation of fxtgTt=1.
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Values of x

NT bandwidth 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

100 h1=2 -0.0195 -0.0130 -0.0077 -0.0035 -0.0000 0.0035 0.0076 0.0129 0.0195

(iqr) 0.0180 0.0144 0.0118 0.0111 0.0108 0.0108 0.0121 0.0148 0.0183

h -0.0075 -0.0041 -0.0025 -0.0014 -0.0004 0.0004 0.0016 0.0042 0.0086

(iqr) 0.0285 0.0234 0.0218 0.0228 0.0248 0.0226 0.0221 0.0239 0.0297

h3=2 0.0011 0.0003 -0.0003 -0.0006 -0.0005 -0.0009 -0.0017 -0.0004 0.0010

(iqr) 0.0374 0.0338 0.0359 0.0379 0.0399 0.0363 0.0332 0.0366 0.0422

500 h1=2 -0.0157 -0.0095 -0.0049 -0.0018 0.0006 0.0029 0.0055 0.0091 0.0144

(iqr) 0.0101 0.0085 0.0073 0.0068 0.0061 0.0065 0.0071 0.0089 0.0112

h -0.0029 -0.0000 0.0006 0.0003 0.0004 0.0007 0.0002 -0.0002 0.0017

(iqr) 0.0152 0.0132 0.0142 0.0136 0.0135 0.0145 0.0138 0.0145 0.0170

h3=2 0.0032 0.0038 0.0031 0.0011 0.0001 0.0001 -0.0022 -0.0040 -0.0047

(iqr) 0.0221 0.0206 0.0235 0.0225 0.0230 0.0238 0.0242 0.0232 0.0254

1000 h1=2 -0.0138 -0.0082 -0.0043 -0.0016 0.0004 0.0024 0.0047 0.0080 0.0129

(iqr) 0.0088 0.0076 0.0061 0.0052 0.0051 0.0057 0.0065 0.0077 0.0093

h -0.0005 0.0007 0.0004 0.0004 0.0002 -0.0000 -0.0004 -0.0006 0.0003

(iqr) 0.0135 0.0124 0.0123 0.0115 0.0113 0.0119 0.0129 0.0127 0.0140

h3=2 0.0052 0.0040 0.0021 0.0016 0.0001 -0.0010 -0.0025 -0.0035 -0.0055

(iqr) 0.0179 0.0180 0.0195 0.0190 0.0186 0.0191 0.0204 0.0199 0.0188

Table 4: Estimated mean deviation from the choice speci�c expected value

E [V�0 (st+1) jxt = x; at = 0] for various values of x 2 [0; 1] and its corresponding interquartile

range. h = 1:06s(T )�1=5 is the bandwidth used in the nonparametric estimation, s = denotes the

standard deviation of fxtgTt=1.
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Figure 1: The di¤erence in the estimated mean estimator of choice speci�c expected continuation

values, E [V�0 (st+1) jxt; at = 1]�E [V�0 (st+1) jxt; at = 0], for T = 100; (h1,h2,h3) corresponds to the
the bandwidths (h1=2; h; h3=2).
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Figure 2: The di¤erence in the estimated mean estimator of choice speci�c expected continuation

values, E [V�0 (st+1) jxt; at = 1]�E [V�0 (st+1) jxt; at = 0], for T = 500; (h1,h2,h3) corresponds to the
the bandwidths (h1=2; h; h3=2).
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Figure 3: The di¤erence in the estimated mean estimator of choice speci�c expected continuation

values, E [V�0 (st+1) jxt; at = 1]�E [V�0 (st+1) jxt; at = 0], for T = 1000; (h1,h2,h3) corresponds to the
the bandwidths (h1=2; h; h3=2).
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