367,195 research outputs found

    Nonparametric and Varying Coefficient Modal Regression

    Full text link
    In this article, we propose a new nonparametric data analysis tool, which we call nonparametric modal regression, to investigate the relationship among interested variables based on estimating the mode of the conditional density of a response variable Y given predictors X. The nonparametric modal regression is distinguished from the conventional nonparametric regression in that, instead of the conditional average or median, it uses the "most likely" conditional values to measures the center. Better prediction performance and robustness are two important characteristics of nonparametric modal regression compared to traditional nonparametric mean regression and nonparametric median regression. We propose to use local polynomial regression to estimate the nonparametric modal regression. The asymptotic properties of the resulting estimator are investigated. To broaden the applicability of the nonparametric modal regression to high dimensional data or functional/longitudinal data, we further develop a nonparametric varying coefficient modal regression. A Monte Carlo simulation study and an analysis of health care expenditure data demonstrate some superior performance of the proposed nonparametric modal regression model to the traditional nonparametric mean regression and nonparametric median regression in terms of the prediction performance.Comment: 33 page

    Sparse Additive Models

    Full text link
    We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use of arbitrary nonparametric smoothers. An analysis of the theoretical properties of SpAM is given. We also study a greedy estimator that is a nonparametric version of forward stepwise regression. Empirical results on synthetic and real data are presented, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data

    Penalized variable selection procedure for Cox models with semiparametric relative risk

    Full text link
    We study the Cox models with semiparametric relative risk, which can be partially linear with one nonparametric component, or multiple additive or nonadditive nonparametric components. A penalized partial likelihood procedure is proposed to simultaneously estimate the parameters and select variables for both the parametric and the nonparametric parts. Two penalties are applied sequentially. The first penalty, governing the smoothness of the multivariate nonlinear covariate effect function, provides a smoothing spline ANOVA framework that is exploited to derive an empirical model selection tool for the nonparametric part. The second penalty, either the smoothly-clipped-absolute-deviation (SCAD) penalty or the adaptive LASSO penalty, achieves variable selection in the parametric part. We show that the resulting estimator of the parametric part possesses the oracle property, and that the estimator of the nonparametric part achieves the optimal rate of convergence. The proposed procedures are shown to work well in simulation experiments, and then applied to a real data example on sexually transmitted diseases.Comment: Published in at http://dx.doi.org/10.1214/09-AOS780 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Heterogeneity and the nonparametric analysis of consumer choice: conditions for invertibility

    Get PDF
    This paper considers structural nonparametric random utility models for continuous choice variables. It provides sufficient conditions on random preferences to yield reduced- form systems of nonparametric stochastic demand functions that allow global invertibility between demands and random utility components. Invertibility is essential for global identifcation of structural consumer demand models, for the existence of well-specified probability models of choice and for the nonparametric analysis of revealed stochastic preference

    Pointwise universal consistency of nonparametric linear estimators

    Get PDF
    This paper presents sufficient conditions for pointwise universal consistency of nonparametric delta estimators. We show the applicability of these conditions for some classes of nonparametric estimators

    Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models

    Full text link
    A variable screening procedure via correlation learning was proposed Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under the nonparametric additive models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, an iterative nonparametric independence screening (INIS) is also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.Comment: 48 page
    corecore