8 research outputs found

    Active Sensing as Bayes-Optimal Sequential Decision Making

    Full text link
    Sensory inference under conditions of uncertainty is a major problem in both machine learning and computational neuroscience. An important but poorly understood aspect of sensory processing is the role of active sensing. Here, we present a Bayes-optimal inference and control framework for active sensing, C-DAC (Context-Dependent Active Controller). Unlike previously proposed algorithms that optimize abstract statistical objectives such as information maximization (Infomax) [Butko & Movellan, 2010] or one-step look-ahead accuracy [Najemnik & Geisler, 2005], our active sensing model directly minimizes a combination of behavioral costs, such as temporal delay, response error, and effort. We simulate these algorithms on a simple visual search task to illustrate scenarios in which context-sensitivity is particularly beneficial and optimization with respect to generic statistical objectives particularly inadequate. Motivated by the geometric properties of the C-DAC policy, we present both parametric and non-parametric approximations, which retain context-sensitivity while significantly reducing computational complexity. These approximations enable us to investigate the more complex problem involving peripheral vision, and we notice that the difference between C-DAC and statistical policies becomes even more evident in this scenario.Comment: Scheduled to appear in UAI 201

    Optimal Policies Search for Sensor Management

    No full text
    International audienceThis paper introduces a new approach to solve sensor management problems. Classically sensor management problems can be well formalized as Partially-Observed Markov Decision Processes (POMPD). The original approach developped here consists in deriving the optimal parameterized policy based on a stochastic gradient estimation. We assume in this work that it is possible to learn the optimal policy off-line (in simulation ) using models of the environement and of the sensor(s). The learned policy can then be used to manage the sensor(s). In order to approximate the gradient in a stochastic context, we introduce a new method to approximate the gradient, based on Infinitesimal Perturbation Approximation (IPA). The effectiveness of this general framework is illustrated by the managing of an Electronically Scanned Array Radar. First simulations results are finally proposed

    Kamerajärjestelmän suunnan optimointi navigointitehtävässä

    Get PDF
    Navigation in an unknown environment consists of multiple separable subtasks, such as collecting information about the surroundings and navigating to the current goal. In the case of pure visual navigation, all these subtasks need to utilize the same vision system, and therefore a way to optimally control the direction of focus is needed. This thesis presents a case study, where the active sensing problem of directing the gaze of a mobile robot with three machine vision cameras is modeled as a partially observable Markov decision process (POMDP) using a mutual information (MI) based reward function. The key aspect of the solution is that the cameras are dynamically used either in monocular or stereo configuration. The algorithms are implemented on Robot Operating System (ROS) and the benefits of using the proposed active sensing implementation over fixed stereo cameras are demonstrated with simulations experiments. The proposed active sensing outperforms the fixed camera solution when prior information about the environment is highly uncertain, and performs just as good in other tested scenarios. --- Navigaatio ennalta tuntemattomassa ympäristössä koostuu useista erillisistä alitehtävistä kuten informaation keräämisestä ja tämänhetkiseen kohteeseen navigoinnista. Kun kyse on puhtaasti visuaalisesta navigoinnista, tarvitsee kaikkien alitehtävien hyödyntää samaa kamerajärjestelmää, joten kamerajärjestelmän suunnan optimointi on tarpeen. Tässä diplomityössä esitellään esimerkkitapaus, jossa kolmen mobiiliin robottiin kiinnitetyn kameran suunnan aktiivinen operointiongelma mallinnetaan osittain havaittavana Markov-päätösprosessina (POMDP), jossa käytetään keskinäisinformaatioon (MI) perustuvaa palkkiota. Olennainen osa ratkaisua on, että kameroita voidaan käyttää dynaamisesti sekä monokulaarisessa- että stereokamera-konfiguraatiossa. Kehitetyt algoritmit implementoidaan Robot Operating System (ROS) -järjestelmälle ja kameroiden aktiivisen operoinnin hyödyt verrattuna kiinteästi asennettuihin stereokameroihin osoitetaan simulaatioilla. Kehitetty aktiivinen operointi suoriutuu kiinteitä kameroita paremmin kun ennakkotieto ympäristöstä on hyvin epävarmaa, ja muissa kokeilluissa tapauksissa vähintään yhtä hyvin

    Active Sensing for Partially Observable Markov Decision Processes

    Get PDF
    Context information on a smart phone can be used to tailor applications for specific situations (e.g. provide tailored routing advice based on location, gas prices and traffic). However, typical context-aware smart phone applications use very limited context information such as user identity, location and time. In the future, smart phones will need to decide from a wide range of sensors to gather information from in order to best accommodate user needs and preferences in a given context. In this thesis, we present a model for active sensor selection within decision-making processes, in which observational features are selected based on longer-term impact on the decisions made by the smart phone. This thesis formulates the problem as a partially observable Markov decision process (POMDP), and proposes a non-myopic solution to the problem using a state of the art approximate planning algorithm Symbolic Perseus. We have tested our method on a 3 small example domains, comparing different policy types, discount factors and cost settings. The experimental results proved that the proposed approach delivers a better policy in the situation of costly sensors, while at the same time provides the advantage of faster policy computation with less memory usage

    Active Control Strategies for Chemical Sensors and Sensor Arrays

    Get PDF
    Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing. First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor’s next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise. Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise
    corecore