Sensory inference under conditions of uncertainty is a major problem in both
machine learning and computational neuroscience. An important but poorly
understood aspect of sensory processing is the role of active sensing. Here, we
present a Bayes-optimal inference and control framework for active sensing,
C-DAC (Context-Dependent Active Controller). Unlike previously proposed
algorithms that optimize abstract statistical objectives such as information
maximization (Infomax) [Butko & Movellan, 2010] or one-step look-ahead accuracy
[Najemnik & Geisler, 2005], our active sensing model directly minimizes a
combination of behavioral costs, such as temporal delay, response error, and
effort. We simulate these algorithms on a simple visual search task to
illustrate scenarios in which context-sensitivity is particularly beneficial
and optimization with respect to generic statistical objectives particularly
inadequate. Motivated by the geometric properties of the C-DAC policy, we
present both parametric and non-parametric approximations, which retain
context-sensitivity while significantly reducing computational complexity.
These approximations enable us to investigate the more complex problem
involving peripheral vision, and we notice that the difference between C-DAC
and statistical policies becomes even more evident in this scenario.Comment: Scheduled to appear in UAI 201