416 research outputs found

    Conservation laws with nonlocality in density and velocity and their applicability in traffic flow modelling

    Full text link
    In this work we present a nonlocal conservation law with a velocity depending on an integral term over a part of the space. The model class covers already existing models in literature, but it is also able to describe new dynamics mainly arising in the context of traffic flow modelling. We prove the existence and uniqueness of weak solutions of the nonlocal conservation law. Further, we provide a suitable numerical discretization and present numerical examples

    Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws

    Full text link
    We present a second-order accurate numerical method for a class of nonlocal nonlinear conservation laws called the "nonlocal pair-interaction model" which was recently introduced by Du, Huang, and LeFloch. Our numerical method uses second-order accurate reconstruction-based schemes for local conservation laws in conjunction with appropriate numerical integration. We show that the resulting method is total variation diminishing (TVD) and converges towards a weak solution. In fact, in contrast to local conservation laws, our second-order reconstruction-based method converges towards the unique entropy solution provided that the nonlocal interaction kernel satisfies a certain growth condition near zero. Furthermore, as the nonlocal horizon parameter in our method approaches zero we recover a well-known second-order method for local conservation laws. In addition, we answer several questions from the paper from Du, Huang, and LeFloch concerning regularity of solutions. In particular, we prove that any discontinuity present in a weak solution must be stationary and that, if the interaction kernel satisfies a certain growth condition, then weak solutions are unique. We present a series of numerical experiments in which we investigate the accuracy of our second-order scheme, demonstrate shock formation in the nonlocal pair-interaction model, and examine how the regularity of the solution depends on the choice of flux function.Comment: 23 pages, 15 figures, 5 table

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Nondegeneracy and Stability of Antiperiodic Bound States for Fractional Nonlinear Schr\"odinger Equations

    Full text link
    We consider the existence and stability of real-valued, spatially antiperiodic standing wave solutions to a family of nonlinear Schr\"odinger equations with fractional dispersion and power-law nonlinearity. As a key technical result, we demonstrate that the associated linearized operator is nondegenerate when restricted to antiperiodic perturbations, i.e. that its kernel is generated by the translational and gauge symmetries of the governing evolution equation. In the process, we provide a characterization of the antiperiodic ground state eigenfunctions for linear fractional Schr\"odinger operators on R\mathbb{R} with real-valued, periodic potentials as well as a Sturm-Liouville type oscillation theory for the higher antiperiodic eigenfunctions.Comment: 46 pages, 2 figure

    Stability of a Nonlocal Traffic Flow Model for Connected Vehicles

    Full text link
    The emerging connected and automated vehicle technologies allow vehicles to perceive and process traffic information in a wide spatial range. Modeling nonlocal interactions between connected vehicles and analyzing their impact on traffic flows become important research questions to traffic planners. This paper considers a particular nonlocal LWR model that has been studied in the literature. The model assumes that vehicle velocities are controlled by the traffic density distribution in a nonlocal spatial neighborhood. By conducting stability analysis of the model, we obtain that, under suitable assumptions on how the nonlocal information is utilized, the nonlocal traffic flow is stable around the uniform equilibrium flow and all traffic waves dissipate exponentially. Meanwhile, improper use of the nonlocal information in the vehicle velocity selection could result in persistent traffic waves. Such results can shed light to the future design of driving algorithms for connected and automated vehicles.Comment: 20 pages, 5 figure

    Lyapunov stabilization for nonlocal traffic flow models

    Full text link
    Using a nonlocal second-order traffic flow model we present an approach to control the dynamics towards a steady state. The system is controlled by the leading vehicle driving at a prescribed velocity and also determines the steady state. Thereby, we consider both, the microscopic and macroscopic scales. We show that the fixed point of the microscopic traffic flow model is asymptotically stable for any kernel function. Then, we present Lyapunov functions for both, the microscopic and macroscopic scale, and compute the explicit rates at which the vehicles influenced by the nonlocal term tend towards the stationary solution. We obtain the stabilization effect for a constant kernel function and arbitrary initial data or concave kernels and monotone initial data. Numerical examples demonstrate the theoretical results

    Residual equilibrium schemes for time dependent partial differential equations

    Get PDF
    Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical methods, in particular for high order ones. In this paper, inspired by micro-macro decomposition methods for kinetic equations, we present a class of schemes which are capable to preserve the steady state solution and achieve high order accuracy for a class of time dependent partial differential equations including nonlinear diffusion equations and kinetic equations. Extension to systems of conservation laws with source terms are also discussed.Comment: 23 pages, 12 figure

    On a Class of Nonlocal Continuity Equations on Graphs

    Full text link
    Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, e.g., the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen
    • …
    corecore