We consider the existence and stability of real-valued, spatially
antiperiodic standing wave solutions to a family of nonlinear Schr\"odinger
equations with fractional dispersion and power-law nonlinearity. As a key
technical result, we demonstrate that the associated linearized operator is
nondegenerate when restricted to antiperiodic perturbations, i.e. that its
kernel is generated by the translational and gauge symmetries of the governing
evolution equation. In the process, we provide a characterization of the
antiperiodic ground state eigenfunctions for linear fractional Schr\"odinger
operators on R with real-valued, periodic potentials as well as a
Sturm-Liouville type oscillation theory for the higher antiperiodic
eigenfunctions.Comment: 46 pages, 2 figure