2 research outputs found

    A Study on Defect Identification of Planetary Gearbox under Large Speed Oscillation

    Get PDF
    Rotational speed of a reference shaft is the key information for planetary gearbox condition monitoring under nonstationary conditions. As the time-variant speed and load of planetary gearboxes result in time-variant characteristic frequencies as well as vibration magnitudes, the conventional methods tracking time-frequency ridge perform a poor robustness, especially for large speed variations. In this paper, two schemes, time-frequency ridge fusion and logarithm transformation, are proposed to track the targeted ridge curve reliably. Meanwhile, the identified ridge curve by logarithm scheme can be further refined by the time-frequency ridge fusion scheme. Hence, a procedure involving the proposed ridge estimation methods is presented to diagnose the planetary gearbox defects. Two simulation signals and a vibration signal collected from a planetary gearbox in practical engineering (provided by the conference on condition monitoring of machinery in nonstationary operations (CMMNO)) are used to verify the proposed methods. It is validated that the proposed methods can well-track the targeted ridge curve compared with two conventional methods. As a result, the characteristic frequency of each component in the planetary gearbox is clearly demonstrated and the inner race defect of one of the planet bearings is successfully discovered in the order spectrum depending on the derived expression of planet bearing fault frequency
    corecore