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Background
Component extraction plays an important role in multicomponent signal applications, 
e.g., rotary machine (Pineda-Sanchez et al. 2011), power system (González et al. 2008), 
radar and sonar (Yeary et al. 2012; Zeng et al. 2010), speech (Pertila and Nikunen 2015), 
wind turbine (Yang et  al. 2009), biomedicine (Motamedi-Fakhr et  al. 2014). However, 
multicomponent signals from a noisy environment, particularly radar signals in compli-
cated battlefield, are typically too heavily interfered to separate.

Many efforts have been devoted to these multicomponent non-stationary signals, 
mainly based on signal decomposition and adaptive time–frequency methods. Among 
the signal decomposition methods, Hilbert Huang Transform (HHT) employs empiri-
cal mode decomposition (EMD) to express the multicomponent signal with a group of 
intrinsic mode functions (IMF) (Huang et al. 1998). Each IMF is treated as an amplitude-
frequency modulated signal, whereas not all IMFs have physical meaning. Moreover, 
EMD is typically confronted with problems of mode aliasing and end effect. Ensemble 
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Empirical Mode Decomposition is proposed in (Wu and Huang 2009) to solve the mode 
aliasing problem of EMD. However, computational complexity will be largely increased. 
Another effective method is based on energy separation and Gabor filtering (Maragos 
et  al. 1993) but distortion will be introduced in the separated components. To rectify 
the drawback, a Fourier-Bessel (FB) expansion-based method (Pachori and Sircar 2010) 
is exploited to extract components from a multicomponent AM-FM signal. Neverthe-
less, manual determination of the range of FB coefficients means prior information 
needed and may be a limitation for its application. Besides, an iterative approach is pro-
posed (Jainn and Pachori 2015) based on eigenvalue decomposition of Hankel matrix 
and mono-component signal criteria. The method decomposes a multicomponent non-
stationary signal into narrow-band AM-FM components, whereas the effect will be dis-
counted for wide-band components and crossed components.

As the oldest member of spectrum analysis, Fourier transform (FT) and band-pass fil-
ter are the most commonly used method to extract components from a stationary or 
non-stationary signal based on their separable frequency bins (Boashash 1992). How-
ever, the FT-based method fails due to unavailable central frequency and bandwidth 
of filter when components are submerged in strong noise or overlapped in frequency 
domain. One improved method is to employ an adaptive time–frequency filter whose 
central frequency and bandwidth are determined by a local instantaneous frequency (IF) 
(Lee 2011). Time–frequency methods are typically performed by two approaches: non-
parameterized time–frequency analysis (NPTFA) and parameterized time–frequency 
analysis (PTFA); the former is defined without signal-dependent parameters, and the lat-
ter has signal-dependent parameters. Several non-parameterized time–frequency trans-
forms are introduced to achieve local IFs, e.g., Short-Time Fourier Transform (STFT) 
(Kwok and Jones 2000), Wavelet Transform (WT) (Chen et al. 2016) as well as Wigner-
Ville Distribution (WVD) (Hussain and Boashash 2002). These transforms achieve local 
IFs and update the parameters of adaptive filter. However, they suffer from either poor 
time–frequency concentration or interference of cross-terms in dealing with multicom-
ponent signals. The matter is even worse in noisy environment. Comparatively, param-
eterized methods adopt an extra parameterized kernel correlated with the frequency 
modulated (FM) information of the analyzed signal to approach its time–frequency 
energy ridge The typical parameterized transforms include Chirplet Transform (CT) 
(Cui and Wong 2006), polynomial chirplet transform (PCT) (Yang et  al. 2013), Spline 
Chirplet Transform (SCT) (Yang et  al. 2012), Warblet Transform (WBT) (Angrisani 
et al. 2005) and generalized warblet transform (GWBT) (Yang et al. 2012). These param-
eterized transforms can continuously converge to the IF of the analyzed signal by an iter-
ative procedure involving transform, ridge extraction and parameter updating, though 
the iteration will divergent because of their blurred ridges in strong noise.

From a perspective of energy accumulation, FT can largely improve signal-to-noise 
ratio (SNR) because of its energy collection in the whole time domain. The PCT can 
approach the true time–frequency feature of the analyzed signal because of its energy 
accumulation of the windowed signal in an optimal path. Inspired by track-before-
detection (TBD) (Deng et al. 2011) technology in radar, a polynomial chirping Fourier 
transform (PCFT) is exploited to integrate advantages of above two transforms. In the 
PCFT, the time–frequency beelines are replaced with a family of polynomial chirping 
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curves to collect signal energy. Particle swarm optimization (PSO) (Schutte et al. 2004) 
is utilized to search optimal polynomial parameters that enable the PCFT to obtain most 
concentrated energy spectrum for the target component. Then a narrow-band filter and 
the inverse PCFT are employed to extract and reconstruct the component, respectively. 
In the end, a recursive procedure based on PCFT is addressed for successive component 
extraction from the noisy multicomponent signal. Simulations and experiments indi-
cate that the proposed method performs better than conventional global transforms and 
parameterized methods.

The special contributions of this study include:

1.	 The conventional global transforms and parameterized methods are reinterpreted 
from a perspective of energy accumulation.

2.	 According to the new perspective, a novel global transform, i.e., PCFT, is proposed to 
collect signal energy in a nonlinear way for an improved SNR in strong noise.

3.	 PSO is utilized to search optimal polynomial parameters by converting the selection 
of polynomial curves to a nonlinear parameter optimization based on spectrum con-
centration principle.

4.	 A recursive procedure based on PCFT is addressed for sequential component extrac-
tion from a noisy multicomponent signal.

The remainder of this paper is organized as follows. “Theoretical background” section 
reviews the theoretical background concerning conventional time–frequency trans-
forms. “The proposed method” section describes the PCFT-based method for compo-
nent extraction. “Simulations and experiments” section evaluates the studied method on 
several numerical and experimental examples. Finally, some conclusions are drawn in 
final section.

Theoretical background
Noisy multicomponent signal

A noisy multicomponent FM signal can be expressed as the sum of sinusoidal functions 
and noise, which is defined as (Yang et al. 2014)

where n(t) is white Gaussian noise of power σ 2 and mean of 0. The SNR (Wang et al. 
2015) is defined as

where Ps and Pn are the energy of multicomponent signal and noise. M is the number of 
the components. The analytic formulation of the kth component sk(t), sk(t) ∈ L2(R), can 
be achieved by Hilbert transform as follows.

(1)s(t) =
M
∑

k=1

sk(t)+ n(t)

(2)SNR = 10 log10
(

Ps
/

Pn
)

(3)zs,k(t) = sk(t)+ jH[sk(t)]
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where the Hilbert transform of sk(t) is

P. V. means the integral taken in the sense of Cauchy principal value.
The analytic formulation of the analyzed signal can also be rewritten as (Stankovic 

et al. 2014)

where every IF is fk = φ′
k(t)

/

2π. As Ak(t) varies slowly compared with the IF of the 
component, it is typically considered as a constant amplitude. If M = 1, the signal degen-
erates into a monocomponent signal. The model defined by (1)–(5) applies for noisy 
multicomponent signal and allows the modeling of M time–varying frequency laws.

FT

The FT and Inverse FT are an effective tool to analyze stationary signal. The transforms 
are defined as follows.

FT can be considered as the energy accumulation of the analyzed signal along a time–
frequency beeline parallel to time axes. The global transform converts the analyzed sig-
nal from time domain into spectral representation. The energy-concentrated spectrum 
largely improves SNR for a narrow-band signal, particularly for the monochromatic sig-
nal. Then a band-pass filter can be utilized to separate the concentrated component in 
frequency domain.

However, FT-based method are not suitable for spectrum-crossed components, where 
the matter is even worse in noise environment. Figure 1 shows a time–frequency repre-
sentation (TFR) and spectrum of a nonlinear frequency modulated (NLFM) signal. It can 
be learned that the IF of the non-stationary wideband signal varies with time. The signal 
energy is distributed broadly in spectrum. In this case, the transform projects each piece 
of the energy of the signalinto spectrum but accumulate noise in the whole time domain, 
leading to difficult signal dectection.

STFT and PCT

The STFT is an extension of the FT for non-stationary signal analysis. The STFT divides 
a non-stationary signal into time pieces with a window function. Each piece is assumed 
as stationary and processed with FT.

(4)H[sk(t)] =
1

π
P.V .

∫ +∞

−∞

sk(τ )

t − τ
dτ .

(5)z(t) =
M
∑

k=1

Ak(t)exp[jφk(t)]+ zn(t)

(6)



















S(ω) =
1

2π

� +∞

−∞
z(τ ) exp

�

−jωτ
�

dτ

z(t) =
� +∞

−∞
S(ω) exp

�

jωτ
�

dω

(7)STFT (t,ω) =
∫

z(τ )h(t − τ) exp
(

−jωτ
)

dτ
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where h(t) is the window function. The transform obtains the local IF of the analyzed 
signal by mapping the one-dimensional signal into a two-dimensional function of time 
and frequency. Unfortunately, STFT is limited for better concentration due to its win-
dow effect where a tradeoff must be made between time and frequency resolution.

A modified window function h(t) is employed in PCT to improve time–frequency res-
olution. As an alternative, the PCT is a generalization of the STFT with supplementary 
degrees of freedom for the window function.

where ψ(τ , t; c2, c3, . . . , cn, σ) is a modified window given as

where t and (c2, c3, . . . , cn) ∈ R are time and polynomial chirping cofficients. hσ ∈ L2(R) 
indicates a window function which is typically taken as a Gaussian function.

where σ determines the length of the Gaussian window.
By using polynomial chirplet, the PCT shapes the window with more degrees of free-

dom, i.e., it can not only shear and scale the window along the time and frequency axes, 
but also bend and rotate eah cell in the time–frequency plane. New degrees of freedom 
in shaping the window cells mean better energy collection mode for PCT to concentrate 
the energy ridge of the analyzed signal in the time–frequency plane. The PCT extends 
its ability to analyze NLFM signals because the modified window covers more energy 
within the same time–frequency region.

The PCT is a iterative ridge-extraction method. The coefficients of the PCT can be 
obtained by approaching the energy ridge of the analyzed signal with a polynomial 
function. The STFT provides the initial time–frequency energy ridge for the iterative 

(8)PCT (t,ω; c2, c3, . . . , cn, σ) =
∫ +∞

−∞
z(τ )ψ(τ , t; c2, c3, . . . , cn, σ) exp(−jωτ)dτ

(9)ψ(τ , t; c2, c3, . . . , cn, σ) = hσ (τ − t) exp

[

−j

n
∑

i=2

ci

i
(τ − t)i

]

(10)hσ (t) =
1√
2π

σ exp

[

−
1

2

(

t

σ

)2
]

Fig. 1  TFR and spectrum of a NLFM signal. a TFR. b Signal spectrum



Page 6 of 19Lu et al. SpringerPlus  (2016) 5:1177 

procedure. Then the PCT is performed with estimated parameters to obtain another 
TFR. The PCT continuously converges to the IF of the analyzed signal with a parameter-
ized kernel by a recursion involving transform, ridge extraction and parameter estima-
tion. However, the ridge-extraction method is overwhelmed when useful components 
are submerged in strong noise. The energy ridge within a short-duration constant win-
dow becomes smeared in noise, leading to divergence of the iteration.

The proposed method
PCFT

The PCT of the signal is considered in first window piece. According to definitions in 
(8)–(10), the PCT (0,ω; c2, c3, . . . , cn, σ) can be considered as the energy collection of the 
windowed signal along a polynomial chirping curve. The PCT (0,ω; c2, c3, . . . , cn, σ) of 
the signal can be rewritten as

with

where ω̃ is defiend as a new angular frequency curve which is represented as a poly-
nomial chirping curve in the time–frequency plane. And the transform congregates 
energy of the windowed signal zh(τ ) along the curve. When ω̃ approaches the IF of zh(τ ), 
PCT (0,ω; c2, c3, . . . , cn, σ) will obtain increasingly concentrated energy ridge. Therefore, 
the PCT can approximate the IF of the analyzed signal with a ridge-extraction method. 
However, the method fails in noisy environment due to limited energy of the signal 
within the short-duration window.

The problem in PCT is similar to weak target detection in radar. The conventional tar-
get detection employs the same technology in radar, i.e., detection and track, where sig-
nal detection is a precondition of track. In a low-SNR environment, extracted ridge by 
peak location algorithm can not reveal the time–frequency feature of the analyzed signal 
any longer. Therefore, parameter estimation fails when component energy is submerged 
in strong noise.

Inspired by TBD technology, the window function in the PCT can be removed to con-
vert the local transform to be a global one, i.e., PCFT, which can acquire the same advan-
tage as FT in signal energy accumulation. The PCFT transforms the analyzed signal 
from the time domain into a polynomial chirping Fourier domain, where the analyzed 
signal obtains a concentrated energy-concentrated spectrum and maximize energy peak 
with optimal parameters (c2, c3, . . . , cn). To be simple, the angular frequency curve ω̃ is 
rewritten as

(11)PCT (0, ω̃; c2, c3, . . . , cn, σ) =
∫ +∞

−∞
zh(τ ) exp

(

−jω̃τ
)

dτ

(12)zh(τ ) = z(τ )hσ (τ )

(13)ω̃ = ω +
n

∑

i=2

ci

i
τ i−1

(14)
ω̃ = ω +

n
∑

i=1

αit
i,
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where (α1,α2, . . . ,αn) are new polynomial parameters and n represents the order of pol-
ynomial chirping. As is known, the utilization of high order polynomial can improve IF 
approximation as well as lead to Runge phenomenon. Therefore, n ≤ 3 in most applica-
tions. Like FT, the PCFT and its inverse transform can be defined as follows.

It can be learned from Fig. 2a that the angular frequency curve in FT is replaced with 
a parameterized polynomial chirping curve. By the revision, the PCFT collects signal 
energy along polynomial time–freuqency curves as well as time–frequency beelines. 
With appropriate polynomial parameters, a NLFM signal can obtain an energy-concen-
trated polynomial chirping spectrum. In an ideal case, the signal energy is concentrated 
along the polynomial chirping curve while noise are still distributed in the whole poly-
nomial chirping Fourier domain, as shown in Fig. 2b.

The PCFT is proposed to pick up weak components under heavy noise based on the 
advantages of FT and PCT. As a global transform, FT can avoid ridge extraction prob-
lem in low-SNR environment. As a parameterized method, PCT provides an energy-
concentrated time–frequency ridge by optimizing the way of signal accumulation. It is 
these two merits that the PCFT integrates to obtain an energy-concentrated polynomial 
chirping spectrum utilized in component extraction.

Parameter estimation

The parameter estimation of the polynomial chirping curve becomes a problem when 
PCFT extends its ability to nonlinear frequency-modulated components. According to 
(15), one group of polynomial parameters correspond to one family of polynomial chirp-
ing curves in the time–frequency plane. If polynomial chirping curve approaches the IF 
of the analyzed signal closely, the signal will be concentrated in the polynomial chirping 
domain and get the maximum energy peak. The problem of selecting curve family can 
be considered as an optimization problem which is defined as

(15)



























S(ω) =
� +∞

−∞
z(t) exp

�

−j

�

ω +
n

�

i=1

αit
i

�

t

�

dt,

z(t) =
1

2π

� +∞

−∞
S(ω) exp

�

j

�

ω +
n

�

i=1

αit
i

�

t

�

dω.

Fig. 2  TFR and PCFT spectrum of a NLFM signal. a TFR. b PCFT spectrum
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where (α̃1, α̃2, . . . , α̃n) are estimated polynomial parameters and ω is polynomial chirp-
ing Fourier frequency in the new transform domain. The optional solutions to solve this 
nonlinear optimization problem in (16) include genetic algorithm (Janeiro and Ramos 
2009), neural network (Krabicka et  al. 2011), PSO, etc. PSO is inspired by the behav-
ior of natural animals as well as Bat Algorithm and Cuckoo Search Algorithm. These 
algorithms search global optimal parameters by an iterative process. All these algo-
rithms can afford to solve the parameter estimation problem. However, in contrast with 
other optimal methods, the PSO has less computational complexity and converges to 
the optimal values quickly. Moreover, the PSO are more suitable for the few-parameter 
application. For high order PCFT, other optimal algorithms, like Bat Algorithm, may be 
a better choice. In this paper, the PSO is used for the optimization task for its accuracy 
and simplicity.

Inspired by the social behavior of bird flocking and fish schooling, the PSO employs a 
location-velocity model and searches the optimal parameters with a parallel stochastic 
strategy.. The population of particles corresponds to individual number of parameters. 
In each search, PSO first initializes a swarm of random particles whose number is in 
the range [20, 40]. The swarm will search their optimal solutions by an iterative process. 
Assume that the location and velocity of ith particle are �i =

(

αi,1,αi,2, . . . ,αi,N
)

 and 
Vi =

(

vi,1, vi,2, . . . , vi,N
)

, where N indicates problem dimensions. In every iteration, par-
ticles are updated according to two optimal results. One is individual optimal location 
Pi =

(

pi,1, pi,2, . . . , pi,N
)

 found by the particles themselves, which corresponds to the 
individual extremum qi. Another is global optimal location Pg =

(

pg ,1, pg ,2, . . . , pg ,N
)

 , 
corresponding to the global extremum qg. The iterative expressions are given as follows.

where w is an inertia weight factor, determining the inheriting and exploring abilities of 
particles in the swarm. The weight factor is typically determined with a constant, lin-
ear decreasing or adaptive method. The c1 and c2 are two positive learning factors which 
enable every particle to learn both from their own experiences and the global excellent 
individuals in order to approach the optimal position in the swarm. The learning factors 
are typically determined within [0, 4], equal to each other and default as 2. r1 and r2 are 
random values in [0, 1].

To sum up, the parameter estimation with PSO includes following six steps:

1.	 Initialize location �(0)
i  and velocity V(0)

i  of every particle randomly within predefined 
range, i = 1, 2, . . . ,M;

2.	 Calculate objective function in (16) for every particle, store individual optimal loca-
tions Pi, and their extremes qi depending on individual particles, and save the global 
one Pg and qg of the whole swarm;

3.	 Update individual location �(k)
i  and velocity V(k)

i  of every particle in kth iteration 
according to (17);

(16){α̃1, α̃2, . . . , α̃n} = arg max
ω

|S(ω;α1,α2, . . . ,αn)|

(17)







v(k)
i,j

= wvi,j(t)+ c1r1

�

pi,j − α(k−1)
i,j

�

+ c2r2

�

pg ,j − α(k−1)
i,j

�

,

α
(k)
i,j = α

(k−1)
i,j + v

(k)
i,j , i = 1, 2, . . . ,M; j = 1, 2, . . . ,N ,
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4.	 Compute objective functions in kth iteration, renew Pi and qi based on individual 
particles themselves, and update Pg and qg according to the whole swarm;

5.	 If 
∣

∣

∣
q
(k)
g − q

(k−1)
g

∣

∣

∣
< ε(ε is a predefined margin of error), stop and output Pg and qg; 

else, go to step 3);
6.	 If k > K  (K  is a predefined iteration number), stop and output Pg and qg; else, go to 

step 3).

Component extraction

Each component of the multicomponent signal is different in their energy. The PSO will 
approach the strong component by an iterative search. Figure 3 shows the flowchart of 
multicomponent signal separation. In each component extraction, PSO first approaches 
the optimal parameters of the strong componet. With the optimal parameters, the 
PCFT achieves an energy-concentrated spectrum for the component. Then the target 
component is filtered in polynomial chirping Fourier domain and reconstructed accord-
ing to (15). The procedure is repeated for the remained signal to extract components 
successively.

For a multicomponent signal with different IF laws, there are two cases: one is with 
separable IF laws in the time–frequency plane while the other is with crossed IF laws. 
As it can be seen in Fig. 4, two components of the analyzed signal are separable in the 
time–frequency plane as well as in the polynomial chirping Fourier domain. After PCFT, 
a narrow-band filter can be employed to extract the well-concentrated component.

Initialization

Parameter estimation with 
PSO

PCFT Filter Is there any 
component?

Signal 
reconstruction

Over

Fig. 3  Flowchart of multicomponent signal extraction

Fig. 4  TFR and PCFT spectrum of a signal in case one. a TFR. b PCFT spectrum
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where B determines the bandwidth of the filter. Here, the filter is considered as an open-
loop adaptive filter whose central frequency varies along with energy peak in order to 
capture the component. The filtered component XB(ω) will be reconstructed with 
inverse PCFT according to (15).

Figure 5 shows the TFR and PCFT spectrum of a multicomponent signal in case two. 
The strong component of the analyzed signal is concentratedin the transform domain 
while the other spreads its energy broadly. The component extracted by the filter will 
necessarily contain partial energy of the other component. The compromise for an 
appropriate bandwidth should be made between the extracted component and the 
remain one.

Simulations and experiments
In this section, a range of examples, including simulated and real-world signals, are uti-
lized to verify the effectiveness of the PCFT-based method for component extraction. 
Firstly, a simulation study is performed with a monocomponent signal at two SNRs to 
demonstrate the robustness of the proposed method to noise. Secondly, a nosiy two-
component signal is simulated to explain the process of component extraction in noisy 
environment. Finally, the PCFT-based method is applied to a bat echolocation signal to 
explore its hidden time–frequency structure. Moreover, several conventional time–fre-
quency methods are performed for comparison.

Performance with a noisy monocomponent signal

In this section, a polynomial phased signal with constant amplitude is given as

whose the IF is f (t) = 0.1996+ 0.3686t + 1.6792t2. The sampling frequency is normal-
ized and the sampled points are 2000. In order to compare the noise tolerance of the 

(18)XB(ω) =
{

X(ω), ω0 − B
/

2 < ω < ω0 + B
/

2,

0, else ,

(19)x(t) = sin
(

1.254t + 1.158 · 10−3 · t2 − 3.517 · 10−7 · t3
)

+ n(t)

Fig. 5  TFR and PCFT spectrum of a signal in case two. a TFR. b PCFT spectrum
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proposed method with other methods, the signal is masked by the white Gaussian noise 
whose SNRs are 0 and −10 dB, respectively. Figure 6 provides the FT spectrums of the 
analyzed signal at two SNRs. It can be learned that the noise is too heavy to distinguish 
from the target component when SNR = −10 dB.

Figure  7 shows the TFRs generated by STFT, WVD and PCT. Thereinto, the STFT 
shows poor time–frequency concentration and fails in representing the time–varying IF 
of the non-stationary signal due to its constant time–frequency resolution. The obtained 
TFR by STFT at 0 dB only shows an IF silhouette while the IF signature of the signal is 
totally covered by noise at −10 dB (Fig. 7a, b). The WVD achieves the best time–fre-
quency concentration for the single linear frequency modulated (LFM) signal, yet it is 
unable to suppress crossed terms. As in Fig. 7c, d, self-crossed terms act as main inter-
ference at 0 dB and mutual-crossed terms between the NLFM signal and noise domi-
nate the smeared TFR at the lower SNR. In the PCT, accurate approximation of the IF 
largely depends on a clear energy ridge in the time–frequency plane, which is not suit-
able for the low-SNR signal. Therefore, the clear IF at 0 dB becomes smeared in the TFR 
at −10 dB (Fig. 7e, f ).

In contrast with the conventional transforms, PCFT accumulates signal energy in the 
whole time domain. The parameterized chirping curves of the PCFT are determined by 
(16) with the PSO algorithm. The population size of PSO is set to 30, and the search 
regions are set to [−0.1, 0.1] and [−0.01, 0.01] for α1, α2 according to sampling fre-
quency. Estimated parameters at both SNRs are obtained by an iterative searche and 
listed in Table 1.

With estimated parameters, the component energy is largely concentrated in the 
polynomial chirping Fourier domain at both SNRs, as shown in Fig. 8. Then the target 
component is extracted by a band-pass filter with 1 % bandwidth of sampling frequency. 
Figure 9 describes the TFRs of the extracted component at different SNRs. Both of them 
accurately characterize the IF of the analyzed signal.

Performance with a noisy two‑component signal

In this subsection, a noisy two-component signal is considered as

(20)s(t) = κ1s1(t)+ κ2s2(t)+ n(t)

Fig. 6  FT spectrums of the signal at two SNRs
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Fig. 7  TFRs obtained with different transforms. a, b STFT. c, d WVD. e, f PCT

Table 1  Estimated parameters at different SNRs

SNR ã1 ã2

0 dB 1.1571e−3 −3.5155e−7

−10 dB 1.1610e−3 −3.5280e−7
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with

whose IFs are f1(t) = 0.4 − 1.25 · 10−4t and f2 = 0.3003− 2.504 · 10−4
t + 1.501 · 10−7  

t
2 , respectively. The two mixing coefficients are κ1 = 0.8 and κ2 = 0.6. The multicom-

ponent signal is masked by the noise with an SNR of −10 dB. The sampling frequency is 
normalized and the sampled points are 2000. Figure 10 gives the waveform of the noisy 
signal and its real time–frequency signature. In the PSO, the size of the population is set 
to 30, and the search regions are set to [−0.1, 0.1] and [−0.01, 0.01] for α1, α2.

The PCFT firstly approaches the strong component with the estimated parameters 
obtained by PSO. As seen from the PCFT spectrum of the analyzed signal in Fig. 11a, 

(21)s1(t) = sin
(

2.513t − 3.927 · 10−4 · t2
)

(22)s2(t) = sin
(

1.887t − 7.866 · 10−4 · t2 − 3.144 · 10−7 · t3
)

Fig. 8  PCFT spectrums at different SNRs

Fig. 9  TFRs of the extracted component at different SNRs
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the amplitude of the matched component is much larger than that of noise and the 
other component. The target component is extracted from the crossed components by 
a band-pass filter with 1  % bandwidth of sampling frequency. Figure  11b reveals that 
the TFR of the first component is a LFM signal. The PCFT-based method is repeated 
with the remained signal. The PCFT spectrum of the remained signal and the TFR of the 
extracted component are depicted in Fig. 12. The estimated parameters of two compo-
nents are listed in Table 2.

Application in real‑world signal

In the last experiment, PCFT-based method is employed to analyze a bat echolocation 
signal (http://dsp.rice.edu/software/bat-echolocation-chirp). The digitized echolocation 
signal is a nonlinear multicomponent FM signal. There are 400 samples and the sam-
pling period is 7 μs. It can be observed in Fig. 13 that the signal lasts for about 2.5 ms 
and its energy distributes mainly from 20 kHz to 60 kHz. But the component composi-
tion can not be revealed in individual time or frequency domain.

Similarly, STFT, WVD and PCT are also taken into account for the sake of comparison. 
The TFRs achieved by these methods are depicted in Fig. 14. The parameters of PCFT 

Fig. 10  Signal given by (20). a Time Waveform. b Time–frequency signature

Fig. 11  PCFT spectrum and TFR of the first component. a PCFT spectrum. b TFR

http://dsp.rice.edu/software/bat-echolocation-chirp
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are estimated by PSO algorithm and listed in Table 3. The STFT can only obtain blurred 
time–frequency signatures of strong components, as shown in Fig. 14a. For weak com-
ponents, time–frquency ridges are unconspicuous because of their distributed energy 
on time–frequency plane. In Fig. 14b, WVD reveals the best time–frequency concen-
tration for auto-terms, whereas cross-terms intefere and even distroy the weak compo-
nents. Comparatively, it can be observed from Fig. 14c that the PCT method acquires a 
more concentrated ridge of every component by an iterative procedure including ridge 
extraction, IF approaching and component separation, yet weak components can not be 
detected due to their limited energy within the time window. In Fig.  14d, the assem-
bled TFR obtained by PCFT-based method reveals both strong and weak components. 

Fig. 12  PCFT spectrum and TFR of the second component. a PCFT spectrum. b TFR

Table 2  Estimated parameters of two components

Component ã1 ã2

Component 1 −3.9217e−4 −2.2204e−10

Component 2 −7.8475e−4 3.1383e−7

Fig. 13  The waveform and spectrum of Bat echolocation signal. a Time waveform. b Spectrum
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Besides strong components, weak components are also detected and extracted with 
PCFT by energy accumulation.

Furthermore, we also consider the WVD results after tunable-Q wavelet transform 
(TQWT) on the real-world signal in (Pachorin and Nishad 2016) for better comparison, 
where the bat echolocation signal is processed at different SNR levels and with different 
threshold values. The TQWT followed by WVD can be regarded as an improvement of 
the traditional WVD on cross-term reduction. The method achieved good performance 
compared with conventional WVD, which, however, is at a sacrifice of time–frequency 
concentration. Moreover, decomposition of the signal with sub-bands leads to a broken 
time–frequency energy ridge. In contrast, the proposed method search global optimal 
parameters for PCFT and perform better in time–frequency concentration and continu-
ous IFs for extracted components. Besides, from a perspective of energy accumulation, 

Fig. 14  TFRs obtained by different methods. a STFT. b WVD. c Assembled PCT. d Assembled TFR of PCFT

Table 3  Estimated parameters of the bat echolocation signal

Component Component 1 Component 2 Component 3 Component 4

α̃1 −629.60 −614.35 −498.14 1.3144e+3

α̃2 6.9769e+4 1.3417e+5 6.7696e+3 −3.2871e+5
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the PCFT can also detect the components in low SNR because of its global transform 
attribute.

Conclusion
The main contribution in this paper is to put forward a PCFT. The transform integrates 
advantages both of FT as a global transform and PCT with a signal-dependent kernel, 
and accumulates component energy by a nonlinear way. With the optimal parameters, 
the PCFT converts the analyzed signal from time domain into a polynomial chirping 
Fourier domain, which can obtain concentrated energy of the interested component 
with distributed noise and other components. Moreover, an iterative procedure, includ-
ing parameter estimation, PCFT, filter and recovery, is introduced to extract compo-
nents from a noisy multicomponent signal. Simulations and experiments indicate that 
the proposed method can not only perform well in low-SNR environment, but also pro-
vide more time–frequency details.

Besides above advantages, the proposed method is also confronted with some problems 
in real applications. Just like PCT, the PCFT is suitable to analyze the signal with nonlinear 
IF. However, for the signal with highly oscillating IF, the method cannot guarantee suffi-
cient estimation accuracy of the IF due to Runge phenomenon. Moreover, in real applica-
tion, IF approximation error and improper filter usually cause large residual energy of the 
extracted component after filtering. The residual energy is typically considered as interfer-
ence in later component extraction step. This will be even worse for weak components.

Therefore, the improvement of the current PCFT for better IF estimation will be a 
direction in the future. Our next study will focus on kernel selection of the parameter-
ized chirping Fourier transform for signals with various IFs. Thus, a suitable kernel for 
the analyzed signal can accumulated component energy in the new transform domain, 
resulting in better IF approximation and component extraction. Moreover, adaption of 
the proposed method under different color noise will also be studied for multicompo-
nent non-stationary signals in more applications.
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