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Rotational speed of a reference shaft is the key information for planetary gearbox condition monitoring under nonstationary
conditions. As the time-variant speed and load of planetary gearboxes result in time-variant characteristic frequencies as well
as vibration magnitudes, the conventional methods tracking time-frequency ridge perform a poor robustness, especially for large
speed variations. In this paper, two schemes, time-frequency ridge fusion and logarithm transformation, are proposed to track
the targeted ridge curve reliably. Meanwhile, the identified ridge curve by logarithm scheme can be further refined by the time-
frequency ridge fusion scheme. Hence, a procedure involving the proposed ridge estimation methods is presented to diagnose the
planetary gearbox defects. Two simulation signals and a vibration signal collected from a planetary gearbox in practical engineering
(provided by the conference on condition monitoring of machinery in nonstationary operations (CMMNO)) are used to verify
the proposed methods. It is validated that the proposed methods can well-track the targeted ridge curve compared with two
conventional methods. As a result, the characteristic frequency of each component in the planetary gearbox is clearly demonstrated
and the inner race defect of one of the planet bearings is successfully discovered in the order spectrum depending on the derived
expression of planet bearing fault frequency.

1. Introduction

Planetary gearboxes are widely applied in the drivetrains of
automobiles, helicopters, wind turbines, and so forth, for
the benefits of strong load-bearing capacity, compact, light-
weight, and large transmission ratio [1–3]. Due to the harsh
working conditions, for example, dust, corrosion, and heavy
yet unpredictable load and speed, planetary gearboxes are
particularly prone to damage. Such damage can lead to a
catastrophic failure of the entire mechanical system, and
consequently heavy investment and productivity losses [4–
6]. Therefore, the fault diagnosis of planetary gearbox is very
important for ensuring a high performance transmission.

Vibration analysis is known as an effective tool for the
condition monitoring and fault diagnosis of rotary machin-
ery [7–10]. The health condition monitoring of planetary
gearbox using vibration signals requires the knowledge of
input or the output rotational speed, the number of stages
as well as their arrangement, and the number of gear teeth.

Usually, the information about geometry parameters of gear-
box is available to vibration analysis by the manufacturer’s
details of gearbox [11]. In addition, a tachometer/encoder
is installed at a reference shaft to enable the estimation of
shaft speed. However, the installation of speed sensor for each
machine component is not always technically feasible due
to the limited space and accessibility, and not always eco-
nomically viable because of the costs incurred in investment,
operation, and maintenance [12]. Moreover, the speed sensor
measurement assumes the speed is constant between each
two pulses of the key-phase signal. Therefore, it is inaccurate
when the rotational speed has a large variation [13]. As a
conclusion in [13], several tasks of the signal processing for
nonstationary signal of rotary machines are listed as follows:
estimation of instantaneous rotatory speed, analysis of defect
signature, and identification of rotary system parameters. It
could be found that the estimation of rotational speed is the
first and key task for health monitoring of gearboxes running
on a nonstationary condition.
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A fundamental method for the rotational speed estima-
tion is to define a suitable band around the corresponding
harmonics of the reference shaft and then demodulate this
band [14]. However, this method can estimate the instan-
taneous speed only with limited speed variation [15]. It is
mainly restricted by the results of frequency bands overlap-
ping when the rotational speed is varied significantly. Hence,
two-step method is popularly used to estimate instantaneous
speed of the reference shaft [15, 16]. First, the one-dimension
signal is mapped into two-dimension representation by
the time-frequency analysis (TFA) method. Then, tack the
targeted ridge curve in the time-frequency plane. Currently, a
variety of TFAmethods which give insights into the complex
structure of multicomponent and time-variant frequency
signal have been developed to deal with nonstationary
signal, including short time Fourier transform (STFT) [7],
Wigner-Ville distribution (WVD) [7, 10], wavelet transform
(WT) [8, 10], synchrosqueezing transform (SST) [9], and
parameterized TFA [13, 17]. Considerable researches have
indicated that the TFA methods could be a perfect solution
for processing nonstationary signal [18–23]. However all
TFA methods have their own merits and deficiencies. The
individual TFA method may be suitable for analyzing a
specific class of signals. For WVD, it can create a time-
frequency representation with high time-frequency resolu-
tion for monocomponent signal, but the cross-terms are
introduced inevitably for analyzing multicomponent signal
[7]. WT is powerless for obtaining a precise resolution when
a cluster of high frequency components existed in signal
[8]. The SST technology is highly dependent on the original
TFA method [9]. The parameterized TFA methods [13, 17]
show a powerful ability to achieve the high time-frequency
resolution for analyzing the signal with strongly nonlinear
instantaneous frequency. However, its several limitations
should not be neglected, such as computational complexity
and suitable matching mathematical models. Considering
that the analyzed vibration data are numerous and the
complicated multicomponents are buried in the signal, we
utilize the simplest STFT as the TFA technique in this paper.
Although the STFT could not achieve an arbitrarily high
time-frequency resolution at the same time, [24, 25] indicate
that STFT can distinguish the adjacent frequencies from each
other and is suitable for estimating the smooth ridge curve
when an enough window width is given.

Subsequently, it is to identify the targeted time-frequency
ridge from the time-frequency plane. As the simplest tech-
nique, the direct ridge detection algorithm, called modulus
maximum method [26, 27], is usually used in signal decom-
position and ridge detection. The direct ridge detection
algorithm is to detect the maximum magnitude point in the
frequency direction for every time instant. It only considers
the magnitude of each point in time-frequency plane but
ignores the smoothness of the time-frequency ridge. Asmany
peaks exist in amplitude of the time-frequency representation
at each time, and their number often varies in real cases,
the location of maximum amplitude may be not the actual
ridge point. In these circumstances, it can be unclear which
peak corresponds to which component, and which are the
artifacts just induced by noise; thus it is sensitive to noise

and it is not suitable to estimate instantaneous frequency
of the low signal-to-noise (SNR) signal. In addition, a ridge
detection algorithm for continuous wavelet transform has
been proposed based on a cost function [27], which was
nonsensitive to noise compared with the direct maximum
method. Later, another ridge detection algorithm for STFT
was proposed to detect ridge curve [24] based on the same
cost function, which enhanced further the computational
cost by shrinking the search region. However, its searching
direction may restrict its adaptation in some applications.
An improved ridge detection algorithm was proposed by
minimizing the local cost functions dynamically, in which
both the large amplitude in the local area and the smoothness
of ridge curvewere considered [25, 28]. In this paper, it will be
shown that the improved ridge detection algorithm in [25, 28]
still suffers from the interferences of local bright noise and
adjacent strong ridge curve when a weak ridge is extracted.
Therefore, this study is mainly concentrated on the problem
of robust ridge curve estimation. And then, on this basis,
the order analysis is utilized to transform the nonstationary
vibration signal in time-domain into stationary signal in
angular domain. In this way, the smearing problem caused by
the speed variation can be solved effectively and the detection
of the characteristic frequencies of planetary gearbox is
performed to identify the defective component in planetary
gearbox.

The paper is organized as follows. The experimental set-
up of planetary gearbox and the motivations of this study
are described in Section 2, respectively. In Section 3, two
ridge extraction schemes are proposed, and the simulated
signal and experimental signal are used to verify the proposed
methods.The defect identification of planetary gearbox using
the estimated rotational speed is presented in Section 4. A
detailed discussion is given in Section 5. Finally, a conclusion
is drawn in Section 6.

2. A Planetary Gearbox in
Practical Engineering

2.1. Experimental Set-Up. A schematic of the planetary gear-
box is shown in Figure 1. The planetary gearbox is employed
in an actual wind turbine.The whole gearbox has three stages
(one planetary and two helical parallel stages, neglecting
the gear pair 8-9). Table 1 lists the gear parameters of the
planetary gearbox. As described in Figure 1, the red shaft
represents the input shaft and the yellow shaft stands for the
high speed shaft. When the input speed of planet carrier
is given at any time, the characteristic frequency of each
component in the planetary gearbox can be calculated by
using the expressions of planetary gearbox characteristic
frequencies listed in Table 2, which are deduced from the con-
figuration of planetary gearbox. A vibration signal collected
from this planetary gearbox is provided by the conference on
condition monitoring of machinery in nonstationary opera-
tions (CMMNO). The collected vibration data are sampled
at 5 kHz during speed variation and the duration time is
about 547.4 seconds.The vibration data are collected from an
accelerometer located on the rotor side of the gearbox casing
in the radial direction. It is only known that the speed of input
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Figure 1: Kinematic scheme of planetary gearbox.

Table 1: Gear parameters of planetary gearbox.

Number of gear 𝑧
1

𝑧
2
(3 planet
gears) 𝑧

3
𝑧
4
𝑧
5

𝑧
6

𝑧
7
𝑧
8
𝑧
9

Gear teeth 123 50 21 93 22 120 29 63 23

shaft is between 13 r/min and 15 r/min during the recording
duration. Therefore, it can be deduced that the rotational
speed of high speed shaft is between 1550 and 1800 r/min
according to the information provided in Tables 1 and 2. The
other available information about this gearbox is limited.

2.2. Motivations of This Study. The time-domain waveform
and the frequency spectrum of the raw vibration signal
collected from planetary gearbox are shown in Figure 2,
respectively. It can be seen from the time-domain waveform
that its amplitude performs the intense fluctuation. It is
indicated that the energy of the component buried in the
raw signal exists in the remarkable change with increasing
of time. As shown in Figure 2(b), the regular spectrum lines
cannot be clearly detected in the Fourier spectrum. Thus, it
is powerless for condition monitoring of planetary gearbox
using the conventional technique.

Due to the deficiency of the Fourier transform, it is
necessary to find a more effective method to analyze non-
stationary signals. As described in Figure 3, the procedure
is usually employed for condition monitoring of planetary
gearbox under nonstationary condition. For the second step,
the STFT is utilized to analyze the raw vibration signal which
has been discussed in the introduction section, where a
hamming window of 215 samples is used to obtain a high
frequency resolution, considering the input rotational speed
between 13 r/min and 15 r/min. As presented in Figure 4,
the time-frequency representation obtained by STFT can
reveal more information than the Fourier transform. A lot
of time-frequency ridge curves occur in the time-frequency
plane and oscillate with the change of time. Several ridge
curves containing specific properties are pointed out in the
time-frequency plane. The ridge curve indicated by line 1
is attributed to the high energy time-frequency ridge curve.
The ridge curve indicated by line 3 and line 4 belonging
to the inherent frequency components could be caused by

the structure resonance and interference of the electrical
noise. According to the information of the high speed shaft,
the meshing frequency of high speed shaft locates roughly
between 750Hz and 870Hz due to the 29 teeth of gear
𝑧
7
. Figure 4(b) is a close-up view of Figure 4(a). It can

be seen from Figure 4(b) that the ridge curve of line 2
is between 750Hz and 870Hz roughly. Therefore, line 2
is likely the meshing frequency curve of high speed shaft.
For the third step, it is firstly to determine the targeted
ridge curve and then extract this ridge curve. Generally, the
characteristic frequencies of the components in planetary
gearbox modulated by the strong energy sidebands [2] are
unsuitable as the targeted ridge curve. In addition, the high
energy ridge curve out of sync with the rotational speed of
the reference shaft is also not suitable as the targeted ridge
curve, for example, line 1, which will be proved in Section 3.
As shown in Figure 4(b), the modulation sidebands around
themeshing frequency of high speed shaft are almost invisible
because the gear on the high speed shaft is far away from
the center of planetary gear train. Hence, the ridge curve
indicated by line 2 is selected as the targeted ridge curve.Next,
as discussed in Introduction, themethod proposed in [25, 28]
is firstly attempted to identify these ridge curves from the
time-frequency plane.

The method proposed in [25, 28] is simply described as
follows.

(1) Determine the initial searching point (𝑡
𝐾
,
̃
𝑓

𝐶

𝐾
) in the

time-frequency plane (TF(𝑡
𝑛
, 𝑓
𝑚
), 𝑛 = 1, 2, . . . , 𝑁, 𝑚 =

1, 2, . . . ,𝑀), where 𝑁 and 𝑀 correspond to the number of
discrete time and discrete frequency, respectively. In this case,
it is defined by the local maximum in the time-frequency
plane. As shown in Figure 5(a), the white rectangles near
the corresponding targeted ridge curve represent the local
regions where the point with the maximum is selected as
initial searching point.

(2) Search the targeted ridge curve based on the cost
function 𝐶
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Table 2: Characteristic frequencies of the components in planetary gearbox.

Characteristics frequency Expression
Meshing frequency of gear pairs 1-2 and 2-3 𝑓

𝑚12
= 𝑓
𝑚23

= 𝑧
1
⋅ 𝑓
𝑟

Rotational frequency of blue shaft 𝑓
𝑏
=

𝑧
1
+ 𝑧
3

𝑧
3

⋅ 𝑓
𝑟

Meshing frequency of gear pair 4-5 𝑓
𝑚45

= 𝑧
4
⋅ 𝑓
𝑏
= 𝑧
4
⋅

𝑧
1
+ 𝑧
3

𝑧
3

⋅ 𝑓
𝑟
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=
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𝑧
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𝑧
5
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𝑦
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𝑧
6

𝑧
7

⋅ 𝑓
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𝑧
5

⋅

𝑧
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𝑧
7

⋅ 𝑓
𝑟

Meshing frequency of gear pair 6-7 𝑓
𝑚67

= 𝑧
7
⋅ 𝑓
𝑦
=

𝑧
6

𝑧
7

⋅ 𝑧
7
⋅ 𝑓
𝑔
=

𝑧
6

𝑧
7
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𝑓𝑟 is the rotational frequency of the red input shaft, that is, the rotational frequency of planet carrier.
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Figure 2: Raw vibration signal: (a) time-domain waveform and (b) frequency spectrum.
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Figure 3: Flow chart for condition monitoring of planetary gearbox
under nonstationary condition.

where 𝑒
𝑛

= [𝑓
𝑤
/max
𝑓
𝑚
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factor to adjust the proportion between the amplitude and

smoothness of the ridge curve and ̃
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Generally, all frequencies at 𝑡
𝑛
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but the computational load is heavy and the large amplitude
of adjacent ridge curve could cause the failure of the ridge
curve extraction. Thus, the searching range is dynamically
restricted to a small frequency band FB
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(3)

where 𝑓
𝑤
is the half bandwidth. In this case, 𝑓

𝑤
is set as

20Hz which is a tradeoff between the computational time
and stability because the space between line 1 and line 2
approximates 100Hz. Moreover, the frequency band FB

𝑛
is

dynamically modified with the change of ̃𝑓
𝐶

𝑛
due to the

essential property of the ridge extraction method in [25, 28].
As shown in Figure 5(a), the high energy ridge curve

indicated by line 1 could be well-extracted by the ridge
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Figure 4: (a) Time-frequency representation obtained by STFT and (b) close-up view of (a).

extraction algorithm in [25, 28]. For the targeted ridge
curve indicated by line 2, we make an attempt to use two
different initial searching points to track it. However, some
remarkable deviations are produced when the initial points
are selected from the local regions in left and right hands of
the time-frequency plane. In addition, some close-up views
of Figure 5(a) are shown in Figure 5(b). It can be seen that
some small deviations exist between the two extracted ridge
curves using the different initial searching points.

As discussed above, it is almost impossible to achieve
a satisfactory result for the targeted ridge curve based on
the current time-frequency ridge detection scheme. Conse-
quently, it is necessary to develop alternative methods to
address this problem. Intuitively, it can be concluded that
two solutions could be utilized to settle the problem from
the above analysis. One way to obtain a closer result of
the targeted ridge curve is to combine and fuse the useful
information buried in the ridge curves extracted by using
different initial points. The data fusion technique [29] is
the promising tool to accomplish this objective. Another
way is to design a more rational cost function for the
current time-frequency ridge detection scheme. As displayed
in Figures 6(a) and 6(b), the logarithm transformation of
time-frequency representation by STFT produces seemingly
a better demonstration than that in Figures 4(a) and 4(b).
It is because the logarithm transformation can weaken the
disparity of amplitude. In the next section, we will design the
more robust ridge extraction methods based on the views of
fusion and logarithm transformation.

3. Time-Frequency Ridge Extraction
and Validation

3.1. Time-Frequency Ridge Fusion Scheme

3.1.1. Algorithm of Time-Frequency Ridge Fusion. As afore-
mentioned, the ridge curves obtained by the method in

[25, 28] using different initial searching points perform their
own deficiencies and merits, and the fusion technique can
be used to identify the useful information in the candidate
ridge curves. Hence, we propose a novel scheme named as
the time-frequency ridge fusion to achieve a more accurate
ridge curve than that provided by a sole ridge curve. The
basic idea of this scheme is to retain the useful features in
the extracted ridge curves based on the smoothness property
of real ridge curve and singularity of illusive ridge curve.
These messages can be uncovered by the differential result
of the multiple ridge curves corresponding to different initial
searching point. It should be noted that the proposed scheme
is different from the time-frequency data fusion technique
in [21, 30]. The algorithm in [21, 30] belongs to Step 2 in
Figure 3. Figure 7 gives an illustration of the time-frequency
ridge fusion scheme.

The detailed procedure of the proposed fusion scheme
can be described as follows.

First. Give several initial searching points for a targeted
ridge curve. These initial searching points are defined by the
maximum in the local regions which are usually located in
both ends of the analyzed signal. It is worth noting that these
regions should be close enough to the targeted ridge curve. In
addition, themultiple local regions can be distributed roughly
evenly in the time-frequency plane when more messages are
needed to represent a whole targeted ridge curve under the
worse measurement condition.

Second. Search the time-frequency ridge curves ̃𝑓
1𝐶

,
̃
𝑓

2𝐶

,
. . . ,

̃
𝑓

𝑃𝐶

(𝑃 represents the number of initial searching points)
based on the cost function scheme in [25, 28] using the
initial searching points given in the above step. Usually, these
extracted ridge curves are not identical:

̃
𝑓

𝑖𝐶

̸=
̃
𝑓

𝑗𝐶

for any 𝑖 ̸= 𝑗. (4)
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Figure 5: (a) Ridge curves extracted by the method in [25, 28] and (b) local failure regions of the targeted ridge curve.
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Then, it is known that all of these time-frequency ridge curves
can be regarded as a complete set 𝑌:

𝑌 =

𝑃

⋃

𝑖=1

̃
𝑓

𝑖C
. (5)

And the real targeted time-frequency ridge curve ̃
𝑓

𝐶

is
identified as set 𝐴:

𝐴 ⊂ 𝑌. (6)

Third. Design a fusion engine to define set 𝐴 based on
the smoothness property of real ridge curve and singularity

of illusive ridge curve. In particular, data fusion engine is
designed as follows.

(1) Calculate the differential result between the ridge
curves ̃𝑓

𝑖𝐶

and ̃𝑓
(𝑖+1)𝐶

obtained by using the adjacent initial
searching points (𝑥

𝑖
, 𝑦
𝑖
) and (𝑥

𝑖+1
, 𝑦
𝑖+1
):

Δ
̃
𝑓

𝑖𝐶

=
̃
𝑓

𝑖𝐶

−
̃
𝑓

(𝑖+1)𝐶

, 𝑖 ∈ (1, 2, . . . , 𝑃 − 1) . (7)

(2) Define the fusion region 𝑅𝑖 according to the differen-
tial curve Δ̃𝑓

𝑖𝐶

as

𝑅
𝑖
= [𝑁
𝑖

𝑙
, 𝑁
𝑖

𝑟
] , (8)
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where 𝑁𝑖
𝑙
and 𝑁𝑖

𝑟
represent the left and right endpoints of

fusion region 𝑅𝑖 defined as

𝑁
𝑖

𝑙
= min (argΔ̃𝑓

𝑖𝐶

(𝑛) < 𝜀) ,

𝑁
𝑖

𝑟
= max (argΔ̃𝑓

𝑖𝐶

(𝑛) < 𝜀) ,

(9)

where 𝑛 ∈ [𝑁
𝑥
𝑖

, 𝑁
𝑥
𝑖+1

] and 𝑁
𝑥
𝑖

and 𝑁
𝑥
𝑖+1

stand for the serial
number of 𝑥

𝑖
and 𝑥
𝑖+1

, respectively. 𝜀 is a threshold (1∼2 times
of frequency resolution).There are 𝑃−1 fusion regions in the
whole time-domain.

(3) Search the specific fusion segments in the fusion
region 𝑅𝑖 according to the differential curve Δ̃𝑓

𝑖𝐶

. Generally,
the segments are considered as the demanded fusion loca-
tions where the ridge curves ̃𝑓

𝑖𝐶

and ̃𝑓
(𝑖+1)𝐶

are not in good
agreement with each other. Therefore, the range between a
pair of rising and falling edges in the differential curve Δ̃𝑓

𝑖𝐶

is a small fusion segment defined as Δ̃𝑓
𝑖𝐶

(𝐾 : 𝐿).𝐾 and 𝐿 are
calculated as

𝐾 = 𝑛, if (Δ̃𝑓
𝑖𝐶

(𝑛) ≤ 𝜀) , (Δ
̃
𝑓

𝑖𝐶

(𝑛 + 1) > 𝜀) ,

𝐿 = 𝑛, if (Δ̃𝑓
𝑖𝐶

(𝑛) > 𝜀) , (Δ
̃
𝑓

𝑖𝐶

(𝑛 + 1) ≤ 𝜀) .

(10)

(4) Acquire the fusion results by the shortest route rule
defined as

̃
𝑓

𝐶

(𝐾 : 𝐿)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

̃
𝑓

𝑖𝐶

(𝐾 : 𝐿) , Δ𝐷 < 0,

(
̃
𝑓

𝑖𝐶

(𝐾 : 𝐿) +
̃
𝑓

(𝑖+1)𝐶

(𝐾 : 𝐿))

2

, Δ𝐷 = 0,

̃
𝑓

(𝑖+1)𝐶

(𝐾 : 𝐿) , Δ𝐷 > 0,

(11)

where Δ𝐷 represents the difference between the length of
ridge curves ̃𝑓

𝑖𝐶

(𝐾 : 𝐿) and ̃𝑓
(𝑖+1)𝐶

(𝐾 : 𝐿) in a small fusion
segment as follows:

Δ𝐷 = 𝐷(
̃
𝑓

𝑖𝐶

(𝐾 : 𝐿)) − 𝐷(
̃
𝑓

(𝑖+1)𝐶

(𝐾 : 𝐿)) , (12)

where 𝐷(̃𝑓
𝑖𝐶

(𝐾 : 𝐿)) = ∑
𝐿−1

𝑧=𝐾
|
̃
𝑓

𝑖𝐶

(𝑧 + 1) −
̃
𝑓

𝑖𝐶

(𝑧)| and
| ⋅ | stands for the absolute value. Besides, ̃𝑓

𝐶

(𝑁
𝑥
𝑖

: 𝑁
𝑖

𝑙
) =

̃
𝑓

𝑖𝐶

(𝑁
𝑥
𝑖

: 𝑁
𝑖

𝑙
) and ̃𝑓

𝐶

(𝑁
𝑖+1

𝑟
: 𝑁
𝑥
𝑖+1

) =
̃
𝑓

(𝑖+1)𝐶

(𝑁
𝑖+1

𝑟
: 𝑁
𝑥
𝑖+1

).
(5) Repeat (3)-(4), and terminate until 𝐿 = 𝑁𝑖

𝑟
.

(6) Repeat (1)–(4), and terminate the fusion iteration until
𝑖 = 𝑃 − 1.

Finally. Output the fusion ridge curve ̃𝑓
𝐶

as the approxi-
mately targeted ridge curve.

Remark. The regions [1,𝑁
𝑥
𝑖

] and [𝑁
𝑥
𝑖+1

, 𝑁] at both ends of
the analyzed signal cannot be processed in this procedure. But

they are usually some very small pieces and close to the initial
searching points. Therefore, ̃𝑓

1𝐶

(1 : 𝑁
𝑥
𝑖

) and ̃𝑓
𝑃𝐶

(𝑁
𝑥
𝑖+1

: 𝑁)

could be directly regarded as ̃𝑓
𝐶

.

3.1.2. Simulation Evaluation. In this subsection, a simulated
signal [19] is employed to examine the performance of the
proposed fusion scheme as follows:

𝑠 (𝑡) =

𝑘+3

∑

𝑖=𝑘

𝐴
𝑖
cos(2𝜋𝑖 ∫𝑓

𝑠
(𝑡) 𝑑𝑡 + 𝜃

𝑖
) + 𝑛 (𝑡) , (13)

where 𝑓
𝑠
(𝑡) represents the rotational component to simulate

the speed variation given as

𝑓
𝑠
(𝑡) = 80 + 12𝑒

(−0.2𝑡) sin (2𝜋 ∗ 0.2𝑡) ; (14)

𝑘 = 10 for simulating the medium-high frequency compo-
nents, without loss of generality 𝜃

𝑖
= 0, and 𝐴

10
= 0.18,

𝐴
11

= 0.1, and 𝐴
12

= 0.18. The second component is
regarded as the targeted ridge curve with the weak energy. A
Gaussian white noise 𝑛(𝑡) is added to mimic the background
noise and interferential component. The sampling frequency
is 10000Hz and sampling time is 10 seconds.

As shown in Figure 8(a), the time-frequency represen-
tation of the simulated signal at a SNR −8 dB is obtained
by STFT where a hamming window of 5000 samples is
employed to acquire an enough frequency resolution. The
time-frequency representation uncovers the three compo-
nents buried in the analyzed signal. Then, the targeted ridge
curve is tracked by the cost function scheme in [25, 28]
using two initial searching points.The parameters used in the
cost function are set the same as the contents in Section 2.2.
However, the targeted ridge curve cannot be represented by
both of the extracted ridge curves. Thus, the fusion scheme
is employed to obtain the targeted ridge curve. As described
in Figure 8(b), the useful information in the fusion process is
represented in the differential result of the two ridge curves.
Moreover, some small segments which should be further
improved are clearly shown in the differential curve. As pre-
sented in Figure 8(c), the fusion result is well consistent with
the theoretical ridge curve. To compare with the proposed
method, the results obtained by the cost function scheme
in [25, 28] and modulus maximum method in [26, 27] are
shown in Figure 8(d), respectively. It can be seen that the
ridge curve obtained bymodulus maximummethod exists in
the large deviation in the early stage. The case of divergency
also occurs in the ridge curve extracted by the cost function
scheme at a later stage. And some small deviations exist in the
middle place of the ridge curve extracted by the cost function
scheme. All of these results verify that the proposed method
can obtain an approving result approaching to the theoretical
ridge curve.

To simulate the worse measurement condition, the simu-
lated signal at SNR −10 dB is utilized to verify the proposed
method. Figure 9(a) demonstrates the time-frequency repre-
sentation of the simulated signal where the parameters are set
as the above analysis. Then, two initial searching points are
defined by the maximum in the local regions. However, the
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Figure 8: Simulated signal at SNR −8 dB: (a) time-frequency representation, (b) differential curve, (c) fusion result, and (d) comparison
between the proposed method and the conventional methods.
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Figure 9: Simulated signal at SNR −10 dB: (a) time-frequency representation, (b) ridge curves obtained by cost function scheme in [25, 28],
(c) differential curve, and (d) fusion result.
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Figure 10: Differential result of the time-frequency ridge curves
using two different initial searching points.

ridge curves obtained by the cost function scheme in [25, 28]
cannot represent the whole targeted ridge curve shown in
Figure 9(b). And then, an additional initial searching point
is supplemented in the middle place of the analyzed signal.
As presented in Figure 9(b), the three ridge curves using
different initial searching points represent seemingly the
targeted ridge curve. Figure 9(c) gives the differential curves
of them.The fusion result is provided in Figure 9(d). It can be
seen that the targeted ridge curve can be well-performed by
the fusion scheme at an extremely low SNR.

3.1.3. Experimental Evaluation. In this subsection, we vali-
date the proposed fusion scheme using the planetary gear-
box vibration data given in Section 2.1. As introduced in
Section 2.2, two ridge curves obtained by the cost function
scheme using the initial searching points at the left and
right ends of the signal cannot represent the whole targeted
ridge curve. It can be seen from Figure 10 that the two fail

regions are clearly described in the differential curve and
the enlarged view of its medium region displays a lot of
fusion segments. Figure 11 shows the result obtained by the
proposed fusion scheme. The fused ridge curve can track the
variation of the targeted ridge curve by visual observation.
According to the obtained ridge curve, the rotational speed
of the high speed shaft is calculated due to the 29 teeth of
gear 𝑧

7
. As shown in Figure 12, the rotational speed of the

high speed shaft obtained by the fusion scheme is between
1550 and 1800 r/min at most operating time which is in good
agreement with the discussion in Section 2.1.

Furthermore, the results of the rotational speed of high
speed shaft obtained by modulus maximum method [26, 27]
and cost function scheme in [25, 28] are employed to compare
with the proposedmethod. As demonstrated in Figure 12, the
rotational speed extracted by themodulusmaximummethod
has a little dance in the early stage and produces a big break in
the place of near 100 seconds. The rotational speed extracted
by the cost function scheme in [25, 28] presents the large
jumps at both ends of the signal and the small fluctuations
arise in some places. On the contrary, the fusion scheme gives
a smooth rotational speed curve in the whole time-domain.
The above analysis results verify that our proposed method
delivers a good robustness for identifying the weak and
intense fluctuant ridge curve. The accuracy of the extracted
time-frequency ridge will be further demonstrated later.

3.2. Logarithm Scheme

3.2.1. Algorithm of the Logarithm Scheme. We have summa-
rized that the logarithm transformation of time-frequency
representation could produce a better demonstration than the
original one in Section 2.2. Hence, the cost function 𝐶

𝑛,𝑚
in

[25, 28] is redesigned as

𝐶
𝑛,𝑚

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

(









𝑓
𝑚
−
̃
𝑓

𝐶

𝑛+1









𝑓
𝑤

)

2

− ln 

TF (𝑡
𝑛
, 𝑓
𝑚
)




, 𝑛 = 1, 2, . . . , 𝐾 − 1,

(









𝑓
𝑚
−
̃
𝑓

𝐶

𝑛−1









𝑓
𝑤

)

2

− ln 

TF (𝑡
𝑛
, 𝑓
𝑚
)




, 𝑛 = 𝐾 + 1,𝐾 + 2, . . . , 𝑁.

(15)

All other parameters used in the logarithm scheme are
the same as the contents of cost function scheme introduced
in Section 2.2.

3.2.2. Simulation Evaluation. The simulated signals pre-
sented in Section 3.1.2 are employed to verify the logarithm
scheme in this subsection. As shown in Figure 13(a), the ridge
curve for the simulated signal at SNR −8 dB extracted by the
logarithm scheme can track the targeted ridge curve roughly
and perform a more robust result than the cost function
scheme in [25, 28] (result of cost function scheme was given
in Section 3.1.2). However, some small deviations still exist

in the extracted ridge curves. Then, the result can be further
refined by the fusion scheme shown in Figure 13(b).

Similarly, the simulated signal at SNR −10 dB is processed
by the logarithm scheme. As described in Figure 14(a),
the ridge curves extracted by the logarithm scheme only
using two initial searching points can represent the complete
targeted ridge curve, but three initial searching points for
the cost function scheme in [25, 28] are needed to obtain a
whole targeted ridge curve as given in Section 3.1.2. Although
the extracted ridge curves also produce some deviations, the
fusion scheme can be used to further improve the result as
shown in Figure 14(b).
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Figure 12: Rotational speed estimated by the different ridge curve
extraction methods.

3.2.3. Experimental Evaluation. In this subsection, the loga-
rithm scheme is applied to analyze the experimental signal
given in Section 2.1. As demonstrated in Figure 15(a), the
targeted ridge curve is extracted by the logarithm scheme
and the evident failure region does not arise in the extracted
ridge curve. But they still exist in some local deviations as
described in Figure 15(b). Then, the fusion scheme proposed
in Section 3.1 is used to further process the extracted ridge
curves in Figure 15(a). As shown in Figure 16, the rotational
speed of the high speed shaft obtained by the logarithm
scheme (containing the fusion scheme) is also between 1550
and 1800 r/min at most of the time. In addition, the high
energy curve indicated by line 1 can be also well-tracked.

3.3. Further Validation of the Proposed Methods. To remove
the effect of speed fluctuations, order analysis is usually
performed to convert the equal time sampling to equal
circumferential angle sampling [12, 16]. It could be expected
that the spectrum lines in order spectrum corresponding to
the meshing frequency of each component in the planetary
gearbox will be evidently observed when the targeted ridge
curve is accurately identified by the proposed methods. For

this reason, the order analysis is employed to validate the
accuracy of the extracted rotational speed for the experimen-
tal signal in Sections 3.1 and 3.2.

As shown in Figure 16, the order maps are achieved by
order analysis using the rotational speed of high speed shaft.
The results obtained by the fusion scheme and logarithm
scheme are consistent with each other. It can be seen that a
large amount of straight lines are synchronous to the targeted
ridge curve in the low order region. In addition, the ratio
between the ridge curves indicated by line 1 and line 2 is given
in Figure 18. The high energy ridge curve indicated by line 1
is not synchronous to line 2. This phenomenon is also clearly
shown in Figure 17. As the time-frequency representations
shown in Figure 17 are similar, we only show one type of the
obtained order spectra to save space in the following study.
Figure 19 shows the order spectrum of the planetary gearbox.
Comparingwith the original Fourier spectrum in Figure 2(b),
we can detect a lot of peaks in Figure 19. According to
the information in Table 2, the relationship between the
rotational frequency of high speed shaft and the characteristic
frequencies of all components in the planetary gearbox is
given in Table 4. Then the order corresponding to each
component can be calculated using the gear parameters in
Table 1. Next, we will give the physical meaning of these peaks
in the order spectrum.

As presented in Figure 19, the meshing frequency 𝑓
𝑚45

of
gear pair 4-5 and its harmonics are clearly shown as discrete
lines. In addition, the meshing frequency 𝑓

𝑚67
of gear pair

6-7 is also clearly presented in Figure 19. A zoom-in in the
region between order 0 and order 6.5, as demonstrated in
Figure 20, reveals the meshing frequency 𝑓

𝑚12
of planet gear

and sun gear, equally for planet gear and gear ring, and
its harmonics markedly. Moreover, the modulated sidebands
(planet carrier rotational frequency 𝑓

𝑟
) around the meshing

frequency 𝑓
𝑚12

of planet gear and sun gear are also clearly
described in Figure 21. As the above discussion, the one-to-
one correspondence relationship between all these evident
discrete order lines and characteristic frequencies of the
components in planetary gearbox is uncovered. It is verified
that the reference speed signal extracted by our proposed
methods can well remove speed fluctuations from the raw
vibration signal. And its accuracy is good enough to analyze
to the vibration signal of planetary gearbox in practical
engineering.

4. Defective Identification of
Planetary Gearbox

Most failures of gearbox could initiate in bearings and later
advance to gears and other components [31]. Additionally, the
faulty rolling bearing existing in the planetary gearbox has
been informed by CMMNO. As for the defective bearing in
planetary gearbox, it is either located on the fixed-axis shaft
or planet carrier shaft. If the faulty bearing is located on the
fixed-axis shaft, it is easy to calculate the defective frequency
as [32]. However, the bearings supporting the planet gears,
that is, planet bearings, exhibit a high failure rate and most
gearbox failures initiate in them [33]. Moreover, the spectral
structure of defective planet bearing vibration signal is very
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Figure 13: Simulated signal at SNR −8 dB: (a) results obtained by logarithm scheme and (b) fusion result of the ridge curves in (a).
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Figure 14: Simulated signal at SNR −10 dB: (a) results obtained by logarithm scheme and (b) fusion result of the ridge curves in (a).

complex due to periodically time-variant working condition,
as well as the effect of vibration transfer path in planetary
gearbox. Thus, it is necessary to establish the vibration signal
model of the defective planet bearing according to the above
discussion. To our best knowledge, the vibration response
of a planet bearing with localized defects (spalls or pits) has
been studied in only a very few papers [31, 33, 34]. A lumped
parametermodel of a planetary drivetrain containing a planet
bearing with localized defects was built in [33], which did
not consider the dominant meshing effect of gear pairs. In
addition, a fault diagnosis method for planet bearing using
an internal vibration sensor was proposed in [34] where an
accelerometer was mounted internally on the planet carrier
to address the issues of variable transmission path. In fact,
the faulty planet bearing is regarded as the fixed-axis bearing
in [34]. In this section, the explicit equations for calculating
the characteristic frequencies of defective planet bearing
are derived and the vibration signature of planet bearing
presented in Fourier spectrum is also discussed. Later, the
defective component in planetary gearbox is detected in the
order spectrum.

4.1. Vibration Signal Model of Defective Planet Bearing. In the
case of the defective planet bearing, a variety of sidebands

which are caused by the amplitude and frequency modula-
tions appear in the frequency spectrum. In the subsection,
how to calculate characteristic frequency of planet bearing
and the sideband behavior in the frequency spectrum will
be presented and discussed. A clear and explicit expression
of the movement relationship between the planet bearing
and planet carrier shaft should be firstly given. As the outer
race of planet bearing is usually fixed to the planet gear,
the movement direction between the planet gear and planet
carrier is an inverse relationship; thus the relative rotational
frequency of a planet gear to the planet carrier is given as

𝑓
𝑟

2
= 𝑓
2
+ 𝑓
𝑟
, (16)

where 𝑓
2
is the absolute rotational frequency of planet gear

and can be obtained by the fixed planet carrier method as

𝑓
2
= (

𝑧
1

𝑧
2

− 1) ⋅ 𝑓
𝑟
. (17)

Then, the equations of characteristic frequencies of faulty
planet bearing could be derived from the movement rela-
tionship in (16). As given in (18), the fault characteristic



Mathematical Problems in Engineering 13

Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300 400 500

300

400

500

600

700

800

900

Left initial search curve
Right initial search curve

Line 2

Line 1

(a)

100 102 104
720

730

740

Time (s)

Fr
eq

ue
nc

y 
(H

z)

266 268 270 272
720

730

740

Time (s)

Fr
eq

ue
nc

y 
(H

z)

325 326 327 328 329

790

800

810

Time (s)

Fr
eq

ue
nc

y 
(H

z)

480 482 484 486 488
730

740

750

760

Time (s)

Fr
eq

ue
nc

y 
(H

z)

(b)

Figure 15: Ridge curve extraction by logarithm scheme: (a) overall ridge curve in time-frequency plane and (b) local failure regions of the
targeted ridge curve.
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Figure 16: Rotational speed extracted by logarithm scheme (con-
taining the fusion scheme).

Table 3: Coefficient of the characteristic frequency of defective
planet bearing.

Fault type 𝑘
𝑜
of BPFO 𝑘

𝑖
of BPFI 𝑘

𝑏
of BSF

Coefficient 6.694 9.306 2.981

Table 4: Relationship between the rotational frequency 𝑓
𝑦
of

high speed shaft and the characteristic frequencies of all other
components.

Characteristics
frequency Expression

Planet carrier frequency 𝑓
𝑟
=

𝑧
3

𝑧
1
+ 𝑧
3

⋅

𝑧
5

𝑧
4

⋅

𝑧
7

𝑧
6

𝑓
𝑦

Meshing frequency of
gear pairs 1-2 and 2-3 𝑓

𝑚12
= 𝑓
𝑚23

= 𝑧
1
⋅

𝑧
3

𝑧
1
+ 𝑧
3

⋅

𝑧
5

𝑧
4

⋅

𝑧
7

𝑧
6

𝑓
𝑦

Meshing frequency of
gear pair 4-5 𝑓

𝑚45
= 𝑧
5
⋅

𝑧
7

𝑧
6

𝑓
𝑦

Meshing frequency of
gear pair 6-7 𝑓

𝑚67
= 𝑧
7
⋅ 𝑓
𝑦

𝑓𝑦 stands for rotational frequency of high speed shaft.

frequencies of planet bearing are different from the fixed-axis
shaft bearing:

𝑓
𝐹
= 𝑘 ⋅ 𝑓

𝑟

2
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑓
𝑜
= 𝑘
0
⋅ (

𝑧
1

𝑧
2

𝑓
𝑟
) ,

𝑓
𝑖
= 𝑘
𝑖
⋅ (

𝑧
1

𝑧
2

𝑓
𝑟
) ,

𝑓
𝑏
= 𝑘
𝑏
⋅ (

𝑧
1

𝑧
2

𝑓
𝑟
) ,

(18)

where 𝑘 represents the coefficient of the local defective
frequency listed in Table 3; 𝑓

𝑜
, 𝑓
𝑖
, and 𝑓

𝑏
are ball pass

frequency, outer race (BPFO); ball pass frequency, inner race
(BPFI); and ball spin frequency (BSF), respectively.

In addition, the vibration signature of a defective planet
bearing is different from a fixed-axis bearing because of the
complex and time-varying vibration transmission path. The
reasons include the following: (1) the variation in vibration
transmission path is caused by the rotation of planet carrier
[35, 36], (2) the variation in impulse magnitude is caused by

the rotation of an outer race defect relative to the load zone,
and (3) the variation between the impulse direction of an
outer race defect and planet gear meshing direction is caused
by the rotation of planet gear [33]. Therefore, the Fourier
spectrum of vibration signal for a faulty planet bearing is
very complex even if the vibration data are collected from
the planetary gearbox under the stationary condition. As for
BPFI, since the defect does not move relative to the load
zone, the spectral structure of inner race defect of planet
bearing can be described by 𝑚 ⋅ 𝑓

𝑖
+ 𝑛 ⋅ 𝑓

𝑟
, where 𝑚 and

𝑛 are integers, respectively, due to the variation in vibration
transmission path caused by the planet carrier rotation. As for
BPFO, the variations in vibration transmission path, impulse
magnitude, and force direction between impulse and planet
gear meshing exist. Therefore, the spectral structure of outer
race defect of planet bearing can be represented by 𝑚 ⋅ 𝑓

𝑜
+

𝑛 ⋅ 𝑓
𝑟
+ 𝑝 ⋅ 𝑓

𝑟

2
, where 𝑚, 𝑛, and 𝑝 are integers, respectively.

As for the BSF, they also exist in the variation in vibration
transmission path caused by the rotation of planet carrier.
In addition, the faulty characteristic frequency of element
is modulated by the self-rotating frequency of bearing cage
𝑓
𝑐
which can be calculated the same way as (18). Thus, the

spectral structure of ball defect of planet bearing can be
shown by𝑚⋅𝑓

𝑏
+𝑛 ⋅𝑓
𝑟
+𝑝 ⋅𝑓

𝑐
, where𝑚, 𝑛, and 𝑝 are integers,

respectively.

4.2. Result of Defective Identification. As described in [33],
most failures of gearbox initiate in bearings and the planet
bearings are considered as one of the most critical compo-
nents with very high failure rate. Meanwhile, the meshing
frequency of planetary gear and sun gear and its harmonics
are dominantly modulated by the planet carrier passing
frequency 3𝑓

𝑟
(3 planet gears) shown in Figure 22. And a

close-up view in the region between order 0 and order 0.8,
as demonstrated in Figure 23, also displays the planet carrier
passing frequency and its harmonics. These phenomena in
the order spectrum indicate that the three planet gears are
serious asymmetry. Therefore, the most suspected defective
bearing is one of the three planet bearings according to
the information shown in Figures 22 and 23. Furthermore,
as described in Figure 24, two groups of the characteristic
frequencies 3𝑓

𝑖
± 𝑓
𝑟
and 4𝑓

𝑖
± 𝑓
𝑟
are clearly displayed in

the order spectrum between order 0.5 and order 0.8. These
characteristic frequencies are in good agreement with the
spectral structure of inner defect of planet bearing discussed
in Section 4.1. According to above analysis, it can be judged
that a local defect exists in the inner race of one of the planet
bearings.

5. Discussions

The reference rotational speed estimation is the first step and
also a vital procedure for realizing fault diagnosis of planetary
gearbox under the varying speed condition. However, the
installation of speed sensor for each and every machine
component is not always technically feasible due to the
different limited factors. Therefore, the time-frequency ridge
fusion scheme and logarithm scheme were proposed to
extract the rotational speed of reference shaft, respectively.
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Figure 17: Order map (a) obtained by fusion scheme and (b) obtained by logarithm scheme (containing the fusion process).
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Figure 18: Frequency ratio between the ridge curves indicated by
line 2 and line 1.
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Figure 19: Order spectrum obtained by order analysis using the
rotational speed of high speed shaft.

And the result obtained by logarithm scheme needs to be
further enhanced by the fusion scheme. The analysis results
verified that the proposed methods possessed the capacity
to overcome the drawback of conventional ridge detection
algorithms.
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Figure 20: Meshing frequency of gear pair 1-2 and its harmonics.
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Figure 21: Meshing frequency of gear pair 1-2 and its demodulated
sidebands by planet carrier rotational frequency.

However, it is worth noting that the fusion scheme has
still much space to be improved in the future. Currently,
considering the smoothness of the targeted ridge curve, we
used the shortest route principle in the fusion scheme. Some
other criterions, such as averaging the candidate ridge curves
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Figure 23: Planet carrier passing frequency.

in the fusion region and using the gradient information of the
extracted ridge curve, are worth investigation in the future.
In addition, the number of initial searching points can be
determined by specific requirement of engineering practices.
Especially for the worse measurement condition, more initial
searching points need to be used. Moreover, the definition of
the targeted ridge curve is also critical for realizing the fault
diagnosis of planetary gearbox. In fact, the ridge curve with
the high energymay be not synchronous to the reference shaft
and some synchronous ridge curves in the low frequency
region are usually modulated by the strong sidebands. Thus,
the ridge curves under these situations are unsuitable as the
targeted ridge curve. In this study, it is verified that the ridge
curve corresponding to the gear meshing frequency of high
speed shaft is suitably regarded as the targeted ridge curve.

As a result, the research in this paper has the following
main contributions and advantages. (1) A time-frequency
ridge fusion scheme for the rotational speed estimation
is proposed to remedy the deficiency of the conventional
ridge detection algorithm. (2) A logarithm scheme for time-
frequency ridge extraction is proposed from the view of
strengthening the weak ridge and reducing the amplitude
discrepancy. Meanwhile, the extracted ridge curves by the
logarithm scheme can be further refined by the fusion
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Figure 24: Characteristic frequencies of defective planet bearing.

scheme. (3) Considering that the movement formation of
planet bearing is different from that of the fixed-axis bearing,
the explicit equations of planet bearing defective frequencies
are deduced and the spectral structures of these defects are
discussed. (4) One implication of this study is that the ana-
lyzed vibration data are collected from the planetary gearbox
in practical situation, but many researches are focused only
on the case of seeded fault for planetary gearbox.

6. Conclusions

A study on the defect identification of planetary gearbox
under the intensely nonstationary condition has been intro-
duced in this paper. To estimate the instantaneous speed of
the reference shaft reliably, two novel schemes named as the
time-frequency ridge fusion scheme and logarithm scheme
are proposed. Then, the simulated signals and experimental
signal are employed to evaluate the proposed methods,
respectively. It is validated that the proposed methods can
well-identify the targeted ridge curve comparedwith the con-
ventional methods. Moreover, the accuracy of the estimated
rotational speed by the proposedmethods is further validated
by the order analysis. Afterwards, the order spectrum is
utilized to detect the fault in planetary gearbox. As a conse-
quence, the inner race defect of one of the planet bearings
is confirmed by detecting the order spectrum based on the
detailed derivation for the expression of planet bearing faulty
frequency. For future research, it is planned for us to design
the more reliable and rational fusion criterions, that is, the
advanced fusion engine in the fusion scheme for extracting
the ridge curve in the worse working environments.
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