5 research outputs found

    Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms

    Full text link
    Many different machine learning algorithms exist; taking into account each algorithm's hyperparameters, there is a staggeringly large number of possible alternatives overall. We consider the problem of simultaneously selecting a learning algorithm and setting its hyperparameters, going beyond previous work that addresses these issues in isolation. We show that this problem can be addressed by a fully automated approach, leveraging recent innovations in Bayesian optimization. Specifically, we consider a wide range of feature selection techniques (combining 3 search and 8 evaluator methods) and all classification approaches implemented in WEKA, spanning 2 ensemble methods, 10 meta-methods, 27 base classifiers, and hyperparameter settings for each classifier. On each of 21 popular datasets from the UCI repository, the KDD Cup 09, variants of the MNIST dataset and CIFAR-10, we show classification performance often much better than using standard selection/hyperparameter optimization methods. We hope that our approach will help non-expert users to more effectively identify machine learning algorithms and hyperparameter settings appropriate to their applications, and hence to achieve improved performance.Comment: 9 pages, 3 figure

    Improving stroke diagnosis accuracy using hyperparameter optimized deep learning

    Get PDF
    Stroke may cause death for anyone, including youngsters. One of the early stroke detection techniques is a Computerized Tomography (CT) scan. This research aimed to optimize hyperparameter in Deep Learning, Random Search and Bayesian Optimization for determining the right hyperparameter. The CT scan images were processed by scaling, grayscale, smoothing, thresholding, and morphological operation. Then, the images feature was extracted by the Gray Level Co-occurrence Matrix (GLCM). This research was performed a feature selection to select relevant features for reducing computing expenses, while deep learning based on hyperparameter setting was used to the data classification process. The experiment results showed that the Random Search had the best accuracy, while Bayesian Optimization excelled in optimization time

    Nonlinear regression model generation using hyperparameter optimization

    No full text
    An algorithm of the inductive model generation and model selection is proposed to solve the problem of automatic construction of regression models. A regression model is an admissible superposition of smooth functions given by experts. Coherent Bayesian inference is used to estimate model parameters. It introduces hyperparameters which describe the distribution function of the model parameters. The hyperparameters control the model generation process
    corecore