395 research outputs found

    An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks

    Get PDF
    This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable

    Dynamics and control of flexible manipulators

    Get PDF
    Flexible link manipulators (FLM) are well-known for their light mass and small energy consumption compared to rigid link manipulators (RLM). These advantages of FLM are even of greater importance in applications where energy efficiency is crucial, such as in space applications. However, RLM are still preferred over FLM for industrial applications. This is due to the fact that the reliability and predictability of the performance of FLM are not yet as good as those of RLM. The major cause for these drawbacks is link flexibility, which not only makes the dynamic modeling of FLM very challenging, but also turns its end-effector trajectory tracking (EETT) into a complicated control problem. The major objectives of the research undertaken in this project were to develop a dynamic model for a FLM and model-based controllers for the EETT. Therefore, the dynamic model of FLM was first derived. This dynamic model was then used to develop the EETT controllers. A dynamic model of a FLM was derived by means of a novel method using the dynamic model of a single flexible link manipulator on a moving base (SFLMB). The computational efficiency of this method is among its novelties. To obtain the dynamic model, the Lagrange method was adopted. Derivation of the kinetic energy and the calculation of the corresponding derivatives, which are required in the Lagrange method, are complex for the FLM. The new method introduced in this thesis alleviated these complexities by calculating the kinetic energy and the required derivatives only for a SFLMB, which were much simpler than those of the FLM. To verify the derived dynamic model the simulation results for a two-link manipulator, with both links being flexible, were compared with those of full nonlinear finite element analysis. These comparisons showed sound agreement. A new controller for EETT of FLM, which used the singularly perturbed form of the dynamic model and the integral manifold concept, was developed. By using the integral manifold concept the links’ lateral deflections were approximately represented in terms of the rotations of the links and input torques. Therefore the end-effector displacement, which was composed of the rotations of the links and links’ lateral deflections, was expressed in terms of the rotations of the links and input torques. The input torques were then selected to reduce the EETT error. The originalities of this controller, which was based on the singularly perturbed form of the dynamic model of FLM, are: (1) it is easy and computationally efficient to implement, and (2) it does not require the time derivative of links’ lateral deflections, which are impractical to measure. The ease and computational efficiency of the new controller were due to the use of the several properties of the dynamic model of the FLM. This controller was first employed for the EETT of a single flexible link manipulator (SFLM) with a linear model. The novel controller was then extended for the EETT of a class of flexible link manipulators, which were composed of a chain of rigid links with only a flexible end-link (CRFE). Finally it was used for the EETT of a FLM with all links being flexible. The simulation results showed the effectiveness of the new controller. These simulations were conducted on a SFLM, a CRFE (with the first link being rigid and second link being flexible) and finally a two-link manipulator, with both links being flexible. Moreover, the feasibility of the new controller proposed in this thesis was verified by experimental studies carried out using the equipment available in the newly established Robotic Laboratory at the University of Saskatchewan. The experimental verifications were performed on a SFLM and a two-link manipulator, with first link being rigid and second link being flexible.Another new controller was also introduced in this thesis for the EETT of single flexible link manipulators with the linear dynamic model. This controller combined the feedforward torque, which was required to move the end-effector along the desired path, with a feedback controller. The novelty of this EETT controller was in developing a new method for the derivation of the feedforward torque. The feedforward torque was obtained by redefining the desired end-effector trajectory. For the end-effector trajectory redefinition, the summation of the stable exponential functions was used. Simulation studies showed the effectiveness of this new controller. Its feasibility was also proven by experimental verification carried out in the Robotic Laboratory at the University of Saskatchewan

    Digital Control and Monitoring Methods for Nonlinear Processes

    Get PDF
    The chemical engineering literature is dominated by physical and (bio)-chemical processes that exhibit complex nonlinear behavior, and as a consequence, the associated requirements of their analysis, optimization, control and monitoring pose considerable challenges in the face of emerging competitive pressures on the chemical, petrochemical and pharmaceutical industries. The above operational requirements are now increasingly imposed on processes that exhibit inherently nonlinear behavior over a wide range of operating conditions, rendering the employment of linear process control and monitoring methods rather inadequate. At the same time, increased research efforts are now concentrated on the development of new process control and supervisory systems that could be digitally implemented with the aid of powerful computer software codes. In particular, it is widely recognized that the important objective of process performance reliability can be met through a comprehensive framework for process control and monitoring. From: (i) a process safety point of view, the more reliable the process control and monitoring scheme employed and the earlier the detection of an operationally hazardous problem, the greater the intervening power of the process engineering team to correct it and restore operational order (ii) a product quality point of view, the earlier detection of an operational problem might prevent the unnecessary production of o-spec products, and subsequently minimize cost. The present work proposes a new methodological perspective and a novel set of systematic analytical tools aiming at the synthesis and tuning of well-performing digital controllers and the development of monitoring algorithms for nonlinear processes. In particular, the main thematic and research axis traced are: (i) The systematic integrated synthesis and tuning of advanced model-based digital controllers using techniques conceptually inspired by Zubov’s advanced stability theory. (ii) The rigorous quantitative characterization and monitoring of the asymptotic behavior of complex nonlinear processes using the notion of invariant manifolds and functional equations theory. (iii) The systematic design of nonlinear state observer-based process monitoring systems to accurately reconstruct unmeasurable process variables in the presence of time-scale multiplicity. (iv) The design of robust nonlinear digital observers for chemical reaction systems in the presence of model uncertainty

    A Singular Perturbation Approach for Time-Domain Assessment of Phase Margin

    Get PDF
    This paper considers the problem of time-domain assessment of the Phase Margin (PM) of a Single Input Single Output (SISO) Linear Time-Invariant (LTI) system using a singular perturbation approach, where a SISO LTI fast loop system, whose phase lag increases monotonically with frequency, is introduced into the loop as a singular perturbation with a singular perturbation (time-scale separation) parameter Epsilon. First, a bijective relationship between the Singular Perturbation Margin (SPM) max and the PM of the nominal (slow) system is established with an approximation error on the order of Epsilon(exp 2). In proving this result, relationships between the singular perturbation parameter Epsilon, PM of the perturbed system, PM and SPM of the nominal system, and the (monotonically increasing) phase of the fast system are also revealed. These results make it possible to assess the PM of the nominal system in the time-domain for SISO LTI systems using the SPM with a standardized testing system called "PM-gauge," as demonstrated by examples. PM is a widely used stability margin for LTI control system design and certification. Unfortunately, it is not applicable to Linear Time-Varying (LTV) and Nonlinear Time-Varying (NLTV) systems. The approach developed here can be used to establish a theoretical as well as practical metric of stability margin for LTV and NLTV systems using a standardized SPM that is backward compatible with PM
    • …
    corecore