18 research outputs found

    Nonlinear modeling and robust controller-observer for a magnetic microrobot in a fluidic environment using MRI gradients

    Full text link
    International audienceThis paper reports the use of a MRI device to pull a magnetic microrobot inside a vessel and control its trajectory. The bead subjected to magnetic and hydrodynamic forces is first modeled as a nonlinear control system. Then, a backstepping approach is discussed in order to synthesize a feedback law ensuring the stability along the controlled trajectory. We show that this control law, combined with a high gain observer, provides good tracking performances and robustness to measurement noise as well as to some matched uncertainties

    Magnetic Microrobot Locomotion in Vascular System Using A Combination of Time Delay Control and Terminal Sliding Mode Approach

    Get PDF
    This thesis deals with designing a control law for trajectory tracking. The target is to move a microrobot in a blood vessel accurately. The microrobot is made of a ferromagnetic material and is propelled by a magnetic gradient coil. The controller combines time delay control (TDC) and terminal sliding mode (TSM) control. TDC allows deriving a control law without prior knowledge of the plant. As the system is a nonlinear function which also includes uncertainties and unexpected disturbance, TDC gives a benefit of less effort needed compared to model-based controller. Meanwhile, TSM term adds accuracy which it compensates TDC estimation error and also adds robustness against parameter variation and disturbance. In addition, anti-windup scheme acts as a support by eliminating the accumulated error due to integral term by TDC and TSM. So, the proposed controller can avoid actuator saturation problem caused by windup phenomenon. Simulations are conducted by copying a realistic situation. Accuracy and robustness evaluations are done in stages to see how each terms in a control law give an improvement and to see how an overall controller performs. โ“’ 2014 DGISTI. INTRODUCTION 1 -- 1.1. BACKGROUND 1 -- 1.2. RELATED RESEARCH 3 -- 1.3. OBJECTIVE 4 -- 1.4. SPECIFICATION 4 -- 1.5. SCOPE 5 -- 1.6. OVERVIEW 5 -- II. METHOD 6 -- 2.1. TIME DELAY CONTROL 6 -- 2.2. TERMINAL SLIDING MODE 9 -- 2.3. ANTI-WINDUP SCHEME 11 -- 2.4. PRACTICAL APPROACH 14 -- 2.4.1. FEEDBACK SIGNAL 14 -- 2.4.2. CONTROLLER GAIN SELECTION 15 -- 2.4.3. MEASUREMENT NOISE 16 -- 2.5. ADVANTAGES AND DRAWBACKS 16 -- III. RESULTS 17 -- 3.1. SIMULATION SETUP 17 -- 3.1.1. PLANT MODELING 18 -- 3.1.2. ACTUATOR AND POSITION SENSOR MODELING 20 -- 3.1.3. TRAJECTORY 21 -- 3.1.4. SIMULATION PARAMETER 21 -- 3.1.5. CONTROLLER TARGET 24 -- 3.2. ACCURACY AND ROBUSTNESS EVALUATION 24 -- 3.3. ANTI-WINDUP SCHEME EVALUATION 32 -- 3.4. SOLUTION FOR MEASUREMENT NOISE 35 -- 3.5. 2D SIMULATION 46 -- CONCLUSION AND FUTURE WORK 49 -- REFERENCES 50 -- ์š” ์•ฝ ๋ฌธ(ABSTRACT IN KOREAN) 52์ด ๋…ผ๋ฌธ์€ ๊ฒฝ๋กœ ์ถ”์ ์„ ์œ„ํ•œ ์ปจํŠธ๋กค ๋ฒ•์„ ์„ค๊ณ„ํ•œ ๊ฒƒ์ด๋‹ค. ๋ชฉํ‘œ๋Š” ํ˜ˆ๊ด€ ๋‚ด์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ๋งˆ์ดํฌ๋กœ ๋กœ๋ด‡์˜ ์›€์ง์ด๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ดํฌ๋กœ ๋กœ๋ด‡์€ ๊ฐ•์ž์„ฑ์ฒด ๋ฌผ์งˆ๋กœ ๋งŒ๋“ค์–ด์ ธ ์žˆ๊ณ  ์ž๊ธฐ์žฅ์— ์˜ํ•ด์„œ ์ถ”์ง„ ๋œ๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ๋Š” ์‹œ๊ฐ„์ง€์—ฐ์ œ์–ด๊ธฐ๋ฒ•(time delay control)๊ณผ terminal sliding ์ปจํŠธ๋กค์„ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜์˜€๋‹ค. TDC๋Š” ํ”Œ๋žœํŠธ์— ๋Œ€ํ•œ ์„ ํ–‰ ์ง€์‹ ์—†์ด ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹œ์Šคํ…œ์ด ๋ถˆํ™•์‹คํ•จ๊ณผ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์™ธ๋ž€์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋น„์„ ํ˜• ์ผ ๋•Œ TDC๋Š” ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ปจํŠธ๋กค๋Ÿฌ์— ๋น„ํ•ด ์ ์€ ๋…ธ๋ ฅ์ด ๋“œ๋Š” ์žฅ์ •์ด ์žˆ๋‹ค. ํ•œํŽธ, TSM์€ ์ •ํ™•๋„๋ฅผ ๋”ํ•˜์—ฌ TDC์˜ ์ฃผ์ •์—๋Ÿฌ๋ฅผ ๋ณด์ƒํ•˜๊ณ  ๋˜ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ๋ณ€ํ™”์™€ ์™ธ๋ž€์— ๋ฐ˜ํ•œ ๊ฒฌ๊ณ ํ•จ์„ ๋”ํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์•ˆํ‹ฐ ์™€์ธ๋“œ ์—…์€ TDC์™€ TSM์˜ ์ ๋ถ„ ๋•Œ๋ฌธ์— ์ถ•์ ๋˜๋Š” ์—๋Ÿฌ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์ œ์•ˆํ•œ ์ปจํŠธ๋กค๋Ÿฌ๋Š” ์™€์ธ๋“œ์—… ํ˜„์ƒ์— ์˜ํ•œ ์ž‘๋™๊ธฐ์˜ ํฌํ™”ํ˜„์ƒ์„ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ์‹ค์ œ ํ˜„์ƒ์„ ๋”ฐ๋ผ ์‹œํ–‰๋˜์—ˆ๋‹ค. ์ •ํ™•๋„์™€ ๊ฒฌ๊ณ ํ•จ ํ‰๊ฐ€๋Š” ์ „์ฒด์ ์ธ ์ปจํŠธ๋กค๋Ÿฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋Š”๊ฐ€๋ฅผ ๋ณด๋Š” ๊ฒƒ๊ณผ ๊ฐ๊ฐ ์ปจํŠธ๋กค ๋ฐฉ๋ฒ•์ด ์ฃผ๋Š” ๊ฐœ์„ ์ ์„ ๋ณด๋Š” ๋‹จ๊ณ„๋กœ ์‹ค์‹œํ•˜์˜€๋‹ค. โ“’ 2014 DGISTMasterdCollectio

    A Robust controller for micro-sized agents: The prescribed performance approach

    Get PDF
    Applications such as micromanipulation and minimally invasive surgery can be performed using micro-sized agents. For instance, drug-loaded magnetic micro-/nano- particles can enable targeted drug delivery. Their precise manipulation can be assured using a robust motion controller. In this paper, we design a closed-loop controller-observer pair for regulating the position of microagents. The prescribed performance technique is applied to control the microagents to follow desired motion trajectories. The position of the microagents are obtained using microscopic images and image processing. The velocities of the microagents are obtained using an iterative learning observer. The algorithm is tested experimentally on spherical magnetic microparticles that have an average diameter of 100 m. The steady-state errors obtained by the algorithm are 20 m. The errors converge to the steady-state in approximately 8 second

    Dynamic behavior investigation for trajectory control of a microrobot in blood vessels

    Full text link

    Optimal trajectory for a microrobot navigating in blood vessels

    Full text link

    Modeling and Control of a Magnetic Drug Delivery System

    Get PDF
    Therapeutic operation risk has been reduced by the use of micro-robots, allowing highly invasive surgery to be replaced by low invasive surgery (LIS), which provides an effective tool even in previously inaccessible parts of the human body. LIS techniques help delivering drugs effectively via micro-carriers. The micro-carriers are divided into two groups: tethered devices, which are supported by internally supplied propulsion mechanism, and untethered devices. Remote actuation is the critical issue in micro-device navigation, especially through blood vessels. To achieve remote control within the cardiovascular system, magnetic propulsion offers an advantage over other proposed actuation methods. In the literature, most research has focused on micro-device structural design, while there is a lack of research into design and analysis of combined structure and control. As the main part, integrating the principle of electromagnetic induced force by feedback control design will lead to the desired automatic movement. An actuator configuration should thus first be designed to initiate the desired force. The design is basically defining the type and placement of a set of coils to achieve an operational goal. In this project, the magnetic actuation is initiated by a combination of four electromagnets and two sets of uniform coils. Preliminary studies on 2D navigation of a ferromagnetic particle are used to show the effect of actuator structure on controller performance. Accordingly, the performance of the four electromagnets combination is compared to the proposed augmented structure with uniform coils. The simulation results show the improved efficiency of the augmented structure. In more general cases, the arrangement and number of electromagnets are unknown and should be defined. An optimization method is suggested to find these variables when the working space is maximized. Finally, the problem of robust output regulation of the electromagnetic system driven by a linear exosystem, is also addressed in this project. The exosystem is assumed to be neutrally stable with unknown frequencies. The parallel connection of two controllers, a robust stabilizer and an internal model-based controller, is presented to eliminate the output error. In the latter one, an adaptation is used to tune the internal model frequencies such that a steady-state control is produced to maintain the output-zeroing condition. The robust regulation with a local domain of convergence is achieved for a special class of decomposable MIMO nonlinear minimum-phase system. The simulation results show the effectiveness and robustness of this method for the electromagnetic system when two different paths are considered

    Adaptive Controller and Observer for a Magnetic Microrobot

    Full text link

    Bilateral Macro-Micro Teleoperation Using A Magnetic Actuation Mechanism

    Get PDF
    In recent years, there has been increasing interest in the advancement of microrobotic systems in micro-engineering, micro-fabrication, biological research and biomedical applications. Untethered magnetic-based microrobotic systems are one of the most widely developing groups of microrobotic systems that have been extensively explored for biological and biomedical micro-manipulations. These systems show promise in resolving problems related to on-board power supply limitations as well as mechanical contact sealing and lubrication. In this thesis, a high precision magnetic untethered microrobotic system is demonstrated for micro-handling tasks. A key aspect of the proposed platform concerns the integration of magnetic levitation technology and bilateral macro-micro teleoperation for human intervention to avoid imperceptible failures in poorly observed micro-domain environments. The developed platform has three basic subsystems: a magnetic untethered microrobotic system (MUMS), a haptic device, and a scaled bilateral teleoperation system. The MUMS produces and regulates a magnetic field for non-contact propelling of a microrobot. In order to achieve a controlled motion of the magnetically levitated microrobot, a mathematical force model of the magnetic propulsion mechanism is developed and used to design various control systems. In the workspace of 30 ร— 32 ร— 32 mm 3, both PID and LQG\LTR controllers perform similarly the position accuracy of 10 ยต m in a vertical direction and 2 ยต m in a horizontal motion. The MUMS is equipped with an eddy-current damper to enhance its inherent damping factor in the microrobot's horizontal motions. This paper deals with the modeling and analysis of an eddy-current damper that is formed by a conductive plate placed below the levitated microrobot to overcome inherent dynamical vibrations and improve motion precision. The modeling of eddy-current distribution in the conductive plate is investigated by solving the diffusion equation for vector magnetic potential, and an analytical expression for the horizontal damping force is presented and experimentally validated. It is demonstrated that eddy-current damping is a crucial technique for increasing the damping coefficient in a non-contact way and for improving levitation performance. The damping can be widely used in applications of magnetic actuation systems in micro-manipulation and micro-fabrication. To determine the position of the microrobot in a workspace, the MUMS uses high-accuracy laser sensors. However, laser positioning techniques can only be used in highly transparent environments. A novel technique based on real-time magnetic flux measurement has been proposed for the position estimation of the microrobot in case of laser beam blockage, whereby a combination of Hall-effect sensors is employed to find the microrobot's position in free motion by using the produced magnetic flux. In free motion, the microrobot tends to move toward the horizontally zero magnetic field gradient, Bmax location. As another key feature of the magnetic flux measurement, it was realized that the applied force from the environment to the microrobot can be estimated as linearly proportional to the distance of the microrobot from the Bmax location. The developed micro-domain force estimation method is verified experimentally with an accuracy of 1.27 ยต N. A bilateral macro-micro teleoperation technique is employed in the MUMS for the telepresence of a human operator in the task environment. A gain-switching position-position teleoperation scheme is employed and a human operator controls the motion of the microrobot via a master manipulator for dexterous micro-manipulation tasks. The operator can sense a strong force during micro-domain tasks if the microrobot encounters a stiff environment, and the effect of hard contact is fed back to the operator's hand. The position-position method works for both free motion and hard contact. However, to enhance the feeling of a micro-domain environment in the human operator, the scaled force must be transferred to a human, thereby realizing a direct-force-reflection bilateral teleoperation. Additionally, a human-assisted virtual reality interface is developed to improve a human operator's skills in using the haptic-enabled platform, before carrying out an actual dexterous task.1 yea

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR
    corecore