132 research outputs found

    Robust Output-Feedback Stabilization for Incompressible Flows using Low-Dimensional H<sub>∞</sub>-Controllers

    Get PDF

    A Snapshot Algorithm for Linear Feedback Flow Control Design

    Get PDF
    The control of fluid flows has many applications. For micro air vehicles, integrated flow control designs could enhance flight stability by mitigating the effect of destabilizing air flows in their low Reynolds number regimes. However, computing model based feedback control designs can be challenging due to high dimensional discretized flow models. In this work, we investigate the use of a snapshot algorithm proposed in Ref. 1 to approximate the feedback gain operator for a linear incompressible unsteady flow problem on a bounded domain. The main component of the algorithm is obtaining solution snapshots of certain linear flow problems. Numerical results for the example flow problem show convergence of the feedback gains

    A low-rank solution method for Riccati equations with indefinite quadratic terms

    Full text link
    Algebraic Riccati equations with indefinite quadratic terms play an important role in applications related to robust controller design. While there are many established approaches to solve these in case of small-scale dense coefficients, there is no approach available to compute solutions in the large-scale sparse setting. In this paper, we develop an iterative method to compute low-rank approximations of stabilizing solutions of large-scale sparse continuous-time algebraic Riccati equations with indefinite quadratic terms. We test the developed approach for dense examples in comparison to other established matrix equation solvers, and investigate the applicability and performance in large-scale sparse examples.Comment: 19 pages, 2 figures, 5 table

    A Low-Rank Solution Method for Riccati Equations with Indefinite Quadratic Terms

    Get PDF

    A numerical comparison of solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems

    Full text link
    In this paper, we discuss numerical methods for solving large-scale continuous-time algebraic Riccati equations. These methods have been the focus of intensive research in recent years, and significant progress has been made in both the theoretical understanding and efficient implementation of various competing algorithms. There are several goals of this manuscript: first, to gather in one place an overview of different approaches for solving large-scale Riccati equations, and to point to the recent advances in each of them. Second, to analyze and compare the main computational ingredients of these algorithms, to detect their strong points and their potential bottlenecks. And finally, to compare the effective implementations of all methods on a set of relevant benchmark examples, giving an indication of their relative performance

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988

    Path planning, flow estimation, and dynamic control for underwater vehicles

    Get PDF
    Underwater vehicles such as robotic fish and long-endurance ocean-sampling platforms operate in challenging fluid environments. This dissertation incorporates models of the fluid environment in the vehicles' guidance, navigation, and control strategies while addressing uncertainties associated with estimates of the environment's state. Coherent flow structures may be on the same spatial scale as the vehicle or substantially larger than the vehicle. This dissertation argues that estimation and control tasks across widely varying spatial scales, from vehicle-scale to long-range, may be addressed using common tools of empirical observability analysis, nonlinear/non-Gaussian estimation, and output-feedback control. As an application in vehicle-scale flow estimation and control, this dissertation details the design, fabrication, and testing of a robotic fish with an artificial lateral-line inspired by the lateral-line flow-sensing organ present in fish. The robotic fish is capable of estimating the flow speed and relative angle of the oncoming flow. Using symmetric and asymmetric sensor configurations, the robot achieves the primitive fish behavior called rheotaxis, which describes a fish's tendency to orient upstream. For long-range flow estimation and control, path planning may be accomplished using observability-based path planning, which evaluates a finite set of candidate control inputs using a measure related to flow-field observability and selects an optimizer over the set. To incorporate prior information, this dissertation derives an augmented observability Gramian using an optimal estimation strategy known as Incremental 4D-Var. Examination of the minimum eigenvalue of an empirical version of this Gramian yields a novel measure for path planning, called the empirical augmented unobservability index. Numerical experiments show that this measure correctly selects the most informative paths given the prior information. As an application in long-range flow estimation and control, this dissertation considers estimation of an idealized pair of ocean eddies by an adaptive Lagrangian sensor (i.e., a platform that uses its position data as measurements of the fluid transport, after accounting for its own control action). The adaptive sampling is accomplished using the empirical augmented unobservability index, which is extended to non-Gaussian posterior densities using an approximate expected-cost calculation. Output feedback recursively improves estimates of the vehicle position and flow-field states
    corecore