974 research outputs found

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    Aerial-Ground collaborative sensing: Third-Person view for teleoperation

    Full text link
    Rapid deployment and operation are key requirements in time critical application, such as Search and Rescue (SaR). Efficiently teleoperated ground robots can support first-responders in such situations. However, first-person view teleoperation is sub-optimal in difficult terrains, while a third-person perspective can drastically increase teleoperation performance. Here, we propose a Micro Aerial Vehicle (MAV)-based system that can autonomously provide third-person perspective to ground robots. While our approach is based on local visual servoing, it further leverages the global localization of several ground robots to seamlessly transfer between these ground robots in GPS-denied environments. Therewith one MAV can support multiple ground robots on a demand basis. Furthermore, our system enables different visual detection regimes, and enhanced operability, and return-home functionality. We evaluate our system in real-world SaR scenarios.Comment: Accepted for publication in 2018 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR

    Visual-based SLAM configurations for cooperative multi-UAV systems with a lead agent: an observability-based approach

    Get PDF
    In this work, the problem of the cooperative visual-based SLAM for the class of multi-UA systems that integrates a lead agent has been addressed. In these kinds of systems, a team of aerial robots flying in formation must follow a dynamic lead agent, which can be another aerial robot, vehicle or even a human. A fundamental problem that must be addressed for these kinds of systems has to do with the estimation of the states of the aerial robots as well as the state of the lead agent. In this work, the use of a cooperative visual-based SLAM approach is studied in order to solve the above problem. In this case, three different system configurations are proposed and investigated by means of an intensive nonlinear observability analysis. In addition, a high-level control scheme is proposed that allows to control the formation of the UAVs with respect to the lead agent. In this work, several theoretical results are obtained, together with an extensive set of computer simulations which are presented in order to numerically validate the proposal and to show that it can perform well under different circumstances (e.g., GPS-challenging environments). That is, the proposed method is able to operate robustly under many conditions providing a good position estimation of the aerial vehicles and the lead agent as well.Peer ReviewedPostprint (published version

    A low-cost vision-based unmanned aerial system for extremely low-light GPS-denied navigation and thermal imaging

    No full text
    A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging}, abstract = {This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios

    Effective Target Aware Visual Navigation for UAVs

    Full text link
    In this paper we propose an effective vision-based navigation method that allows a multirotor vehicle to simultaneously reach a desired goal pose in the environment while constantly facing a target object or landmark. Standard techniques such as Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) in some cases (e.g., while the multirotor is performing fast maneuvers) do not allow to constantly maintain the line of sight with a target of interest. Instead, we compute the optimal trajectory by solving a non-linear optimization problem that minimizes the target re-projection error while meeting the UAV's dynamic constraints. The desired trajectory is then tracked by means of a real-time Non-linear Model Predictive Controller (NMPC): this implicitly allows the multirotor to satisfy both the required constraints. We successfully evaluate the proposed approach in many real and simulated experiments, making an exhaustive comparison with a standard approach.Comment: Conference paper at "European Conference on Mobile Robotics" (ECMR) 201

    Vision-Aided Navigation for GPS-Denied Environments Using Landmark Feature Identification

    Get PDF
    In recent years, unmanned autonomous vehicles have been used in diverse applications because of their multifaceted capabilities. In most cases, the navigation systems for these vehicles are dependent on Global Positioning System (GPS) technology. Many applications of interest, however, entail operations in environments in which GPS is intermittent or completely denied. These applications include operations in complex urban or indoor environments as well as missions in adversarial environments where GPS might be denied using jamming technology. This thesis investigate the development of vision-aided navigation algorithms that utilize processed images from a monocular camera as an alternative to GPS. The vision-aided navigation approach explored in this thesis entails defining a set of inertial landmarks, the locations of which are known within the environment, and employing image processing algorithms to detect these landmarks in image frames collected from an onboard monocular camera. These vision-based landmark measurements effectively serve as surrogate GPS measurements that can be incorporated into a navigation filter. Several image processing algorithms were considered for landmark detection and this thesis focuses in particular on two approaches: the continuous adaptive mean shift (CAMSHIFT) algorithm and the adaptable compressive (ADCOM) tracking algorithm. These algorithms are discussed in detail and applied for the detection and tracking of landmarks in monocular camera images. Navigation filters are then designed that employ sensor fusion of accelerometer and rate gyro data from an inertial measurement unit (IMU) with vision-based measurements of the centroids of one or more landmarks in the scene. These filters are tested in simulated navigation scenarios subject to varying levels of sensor and measurement noise and varying number of landmarks. Finally, conclusions and recommendations are provided regarding the implementation of this vision-aided navigation approach for autonomous vehicle navigation systems

    HILS based Waypoint Simulation for Fixed Wing Unmanned Aerial Vehicle (UAV)

    Get PDF
    Hardware in loop simulation HILS-based waypoint simulation for fixed wing unmanned aerial vehicles is proposed in this paper. It uses an open-source arducopter as a flight controller, mission planner, and X-plane simulator. Waypoint simulation is carried out in the flight controller and executed in an X-plane simulator through a mission planner. A fixed wing unmanned aerial vehicle with an inverted T tail configuration has been chosen to study and validate waypoint flight control algorithms. The data transmission between mission planner and flight controller is done by serial protocol, whereas data exchange between X-plane and mission planner is done by User Datagram Protocol (UDP). APM mission planner is used as a machine interface to exchange data between the flight controller and the user. User inputs and flight gain parameters, both inner loop and outer loop, can be modified with the help of a mission planner. In addition to that, the mission planner provides a visual output representation of flight data and navigation algorithm
    • …
    corecore