168,484 research outputs found

    Privileged Communications-Attorney and Client

    Get PDF
    A high-dimensional regression space usually causes problems in nonlinear system identification.However, if the regression data are contained in (or spread tightly around) some manifold, thedimensionality can be reduced. This paper presents a use of dimension reduction techniques tocompose a two-step identification scheme suitable for high-dimensional identification problems withmanifold-valued regression data. Illustrating examples are also given

    Isometric Sliced Inverse Regression for Nonlinear Manifolds Learning

    Get PDF
    [[abstract]]Sliced inverse regression (SIR) was developed to find effective linear dimension-reduction directions for exploring the intrinsic structure of the high-dimensional data. In this study, we present isometric SIR for nonlinear dimension reduction, which is a hybrid of the SIR method using the geodesic distance approximation. First, the proposed method computes the isometric distance between data points; the resulting distance matrix is then sliced according to K-means clustering results, and the classical SIR algorithm is applied. We show that the isometric SIR (ISOSIR) can reveal the geometric structure of a nonlinear manifold dataset (e.g., the Swiss roll). We report and discuss this novel method in comparison to several existing dimension-reduction techniques for data visualization and classification problems. The results show that ISOSIR is a promising nonlinear feature extractor for classification applications.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Matrix factorisation and the interpretation of geodesic distance

    Full text link
    Given a graph or similarity matrix, we consider the problem of recovering a notion of true distance between the nodes, and so their true positions. We show that this can be accomplished in two steps: matrix factorisation, followed by nonlinear dimension reduction. This combination is effective because the point cloud obtained in the first step lives close to a manifold in which latent distance is encoded as geodesic distance. Hence, a nonlinear dimension reduction tool, approximating geodesic distance, can recover the latent positions, up to a simple transformation. We give a detailed account of the case where spectral embedding is used, followed by Isomap, and provide encouraging experimental evidence for other combinations of techniques

    Order Reduction of the Radiative Heat Transfer Model for the Simulation of Plasma Arcs

    Full text link
    An approach to derive low-complexity models describing thermal radiation for the sake of simulating the behavior of electric arcs in switchgear systems is presented. The idea is to approximate the (high dimensional) full-order equations, modeling the propagation of the radiated intensity in space, with a model of much lower dimension, whose parameters are identified by means of nonlinear system identification techniques. The low-order model preserves the main structural aspects of the full-order one, and its parameters can be straightforwardly used in arc simulation tools based on computational fluid dynamics. In particular, the model parameters can be used together with the common approaches to resolve radiation in magnetohydrodynamic simulations, including the discrete-ordinate method, the P-N methods and photohydrodynamics. The proposed order reduction approach is able to systematically compute the partitioning of the electromagnetic spectrum in frequency bands, and the related absorption coefficients, that yield the best matching with respect to the finely resolved absorption spectrum of the considered gaseous medium. It is shown how the problem's structure can be exploited to improve the computational efficiency when solving the resulting nonlinear optimization problem. In addition to the order reduction approach and the related computational aspects, an analysis by means of Laplace transform is presented, providing a justification to the use of very low orders in the reduction procedure as compared with the full-order model. Finally, comparisons between the full-order model and the reduced-order ones are presented
    corecore