2,168 research outputs found

    Nonlinear Soft Tissue Mechanics Based on Polytopic Tensor Product Modeling

    Get PDF
    Achieving reliable force control is one of the main design goals of robotic teleoperation. It is essential to grant safe and stable performance of these systems, regarding HMI control, even under major disturbing conditions such as time delay or model parameter uncertainties. This paper discusses the systematic derivation of polytopic qLPV model from the nonlinear dynamics of typical soft tissues of the human body based on recent experimental results. The derivation is based on the Tensor Product (TP) Model Transformation. The presented method is a crucial step in laying the foundations of adequate force control in telesurgery. The proposed approach could form the basis of LMI-based controller design

    Polytopic Model Based Interaction Control for Soft Tissue Manipulation

    Get PDF
    Reliable force control is one of the key components of modern robotic teleoperation. The performance of these systems in terms of safety and stability largely depends on the controller design, as it is desired to account for various disturbing conditions, such as uncertainties of the model parameters or latency-induced problems. This work presents a polytopic qLPV model derived from a previously verified nonlinear soft tissue model, along with a model-based force control scheme that involves a tensor product polytopic state feedback controller. The derivation is based on the Tensor Product (TP) Model Transformation. The proposed force control scheme is verified and evaluated through numerical simulations. Index Terms—Soft tissue modeling, telesurgery control, Polytopic model based control, TP Model Transformation, qLPV modeling, LMI-based controller design

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Real-Time Numerical Simulation for Accurate Soft Tissues Modeling during Haptic Interaction

    Get PDF
    The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials

    ViSpec: A graphical tool for elicitation of MTL requirements

    Full text link
    One of the main barriers preventing widespread use of formal methods is the elicitation of formal specifications. Formal specifications facilitate the testing and verification process for safety critical robotic systems. However, handling the intricacies of formal languages is difficult and requires a high level of expertise in formal logics that many system developers do not have. In this work, we present a graphical tool designed for the development and visualization of formal specifications by people that do not have training in formal logic. The tool enables users to develop specifications using a graphical formalism which is then automatically translated to Metric Temporal Logic (MTL). In order to evaluate the effectiveness of our tool, we have also designed and conducted a usability study with cohorts from the academic student community and industry. Our results indicate that both groups were able to define formal requirements with high levels of accuracy. Finally, we present applications of our tool for defining specifications for operation of robotic surgery and autonomous quadcopter safe operation.Comment: Technical report for the paper to be published in the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems held in Hamburg, Germany. Includes 10 pages and 19 figure

    Models for force control in telesurgical robot systems

    Get PDF
    Surgical robotics is one of the most rapidly developing fields within robotics. Besides general motion control issues, control engineers often find it challenging to design robotic telesurgery systems, as these have to deal with complex environmental constrains. The unique behavior of soft tissues requires special approaches in both robot control and system modeling in the case of robotic tissue manipulation. Precise control depends on the appropriate modeling of the interaction between the manipulated tissues and the instruments held by the robotic arm, frequently referred to as the tool–tissue interaction. Due to the nature of the physiological environment, the mechatronics of the systems and the time delays, it is difficult to introduce a universal model or a general modeling approach. This paper gives an overview of the emerging problems in the design and modeling of telesurgical systems, analyzing each component, and introducing the most widely employed models. The arising control problems are reviewed in the frames of master–slave type teleoperation, proposing a novel oft tissue model and providing an overview of the possible control approaches
    corecore