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Abstract—Reliable force control is one of the key components
of modern robotic teleoperation. The performance of these
systems in terms of safety and stability largely depends on the
controller design, as it is desired to account for various disturbing
conditions, such as uncertainties of the model parameters or
latency-induced problems. This work presents a polytopic qLPV
model derived from a previously verified nonlinear soft tissue
model, along with a model-based force control scheme that
involves a tensor product polytopic state feedback controller.
The derivation is based on the Tensor Product (TP) Model
Transformation. The proposed force control scheme is verified
and evaluated through numerical simulations.

Index Terms—Soft tissue modeling, telesurgery control, Poly-
topic model based control, TP Model Transformation, qLPV
modeling, LMI-based controller design

I. INTRODUCTION

Surgical robotics is one of the most rapidly developing

fields in robotics, representing a fine example of Human–

Machine Interfaces (HMI) [1]. While many surgical gestures

have already been implemented with a degree of autonomy,

most of these devices are still used as teleoperation systems.

This means that a human surgeon as an operator is always

required to be present in the control loop. Modern telesurgical

systems dominantly use only visual feedback, while the ap-

plicability of force or haptic feedback has been a recurring

research topic in the field [2]. Force control incorporating

haptic feedback is a widely discussed problem in master–slave

teleoperation systems, an efficient implementation can enhance

the surgeon’s sensory capabilities during the operation. On the

other hand, long distance teleoperation inherently carries the

difficulties caused by latency (time-delay due to the signal

transfer and processing). This phenomenon can lead to stability

issues in force-controlled teleoperation systems, which mostly

occurs in the case of contact with hard surfaces.

The solution to these issues have been in the focus of many

research in the field of control theory [3]. Some of the most

promising approaches address these problems through model-

based control. These methods require a reliable mathematical

model for the representation of the manipulated substance,

or the human tissue. While in most cases the hard tissue,

such as bone can be considered as rigid body, creating an

accurate model of soft tissue (organs muscles, or the skin)

is a complex problem. Today, a large variety of tool–tissue

interaction models for surgical robotics applications exist [4].

II. RELATED WORK

The problem of reaction force estimation and force control

in surgical robotics can be approached from various angles.

No general ideal solution exists due to the complexity of

the instruments, wide range of required control methods and

limitations in the final applications (such as sterilization or

restrictions on sensor placement and mounting). One of the

first architectures of such control was developed for RO-

BODOC, the first robotic system to perform complete hip

replacement [5]. The control algorithm provided an intuitive

HMI allowing the surgeon to guide the robot in a collaborative

manner, while force feedback was used to modify the feed rate

for cutting, achieving a force controlled velocity input. Lee

et al. presented a sensorless method for estimating reaction

forces acting on a typical surgical robotic instrument, using

a state observer. In their approach, they used a sliding mode

control with sliding perturbation observer (SMCSPO) for the

instrument manipulation [6]. Yuen et al. showed that a force

control method using feed-forward motion terms can largely

improve the force tracking performance in the case of contact

with soft tissues, which is a crucial problem for manipulating

loosely attached or moving organs e.g. during beating heart

surgery [7]. Another relevant work in the topic of force

tracking in beating heart surgery was published by Liu et

al., utilizing the Kelvin–Boltzmann viscoelastic model [8].

Moreira et al. introduced a method for soft tissue force control

using active observers and a viscoelastic interaction model,

confirming that using a realistic tissue model can increase the

performance of the force control [9]. Force control has also

been an emerging field of interest in robotic catheter cardiac

ablation [10] and in minimally invasive surgery [11].

This study extends the previous works of the authors,

where a nonlinear soft tissue model was obtained based on

the experimental investigation of the force response of beef

liver specimens during tool–tissue interaction [12], amended

with [13], a polytopic qLPV (quasi Linear Parameter Varying)
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model of the tissue dynamics that is—regarding its math-

ematical formalism—suitable for direct use of LMI-based

control design methods. As a next step, a model-based force

control scheme is presented, utilizing an off-the-shelf tool–

tissue interaction model. The discussed structure involves a

model-based controller, where the required states for the state-

feedback controller were acquired using a reference dynamic

model of the system, derived using the nonlinear model,

developed previously [12]. The discussed approach utilizes

the Tensor Product Model Transformation (TP transformation

for short) [14] as a systematic methodology capable of trans-

forming analytical nonlinear qLPV state-space representations

into polytopic form, which can be directly used in LMI-based

multi-objective controller synthesis.

III. TENSOR PRODUCT MODEL TRANSFORMATION

The concept of Tensor Product Model Transformation was

introduced by Baranyi [15], and a practical guide for its appli-

cability for qLPV control theory was published in [14]. The

basic idea behind TP Model Transformation is the transfor-

mation of an arbitrary function into polytopic TP form which

is also capable of describing nonlinear dynamical systems for

the purpose of controller design via linear matrix inequalities.

In this section, some of the fundamental definitions of the

Tensor Product Model Transformation are recalled.

Definition 1: (LPV/qLPV model): Consider the following

Linear Parameter Varying model:





ẋ(t)
y(t)
z(t)



 = S(p(t))





x(t)
u(t)
w(t)



 , (1)

with state vector x(t), measured output y(t), performance
output z(t), input u(t), and disturbance input w(t). The

S(p(t)) ∈ S system matrix can be partitioned to A(p(t)),
B(p(t)), C(p(t)), etc. system matrices, and it is defined over

a hyper-rectangular parameter domain:

p(t) ∈ Ω = [a1, b1]× [a2, b2]× ..× [aN , bN ] ⊂ R
N . (2)

If the parameters in p(t) are not independent from the x(t)
state variables, it is called quasi-LPV (qLPV) model.

Definition 2: (Finite element polytopic model): The (1)

LPV/qLPV model, where the system matrix is given as convex

combinations of vertex system matrices, as

S(p) =
R
∑

r=1

wr(p)Sr ∀p ∈ Ω, (3)

where

R
∑

r=1

wr(p) = 1, wr(p) ≥ 0 ∀r,p ∈ Ω. (4)

The term finite indicates that R is bounded.

Definition 3: (Finite element polytopic TP model): The (1)

LPV/qLPV model, where the system matrix is given as convex

combinations of vertex system matrices, and the weighting

functions are decomposed to product of univariate functions:

S(p(t)) =

J1
∑

j1=1

J2
∑

j2=1

..

JN
∑

jN=1

N
∏

n=1

w
(n)
jn

(pn(t))Sj1,j2,..,jN . (5)

Applying the compact notation based on tensor algebra (Lath-

auwer’s work [16]) one has:

S(p(t)) = S
N

⊠
n=1

w(n)(pn(t)), (6)

where the core tensor S ∈ S
J1×J2×···×JN is constructed from

the vertex system matrices Sj1,j2,...,jN ∈ S, and the row vector

w(n)(pn(t)) contains scalar weighting functions w
(n)
jn

(pn(t)),
(jn = 1 . . . JN ), that represents convex combinations as (4)

for all n.

Remark 1: The polytopic TP model (6) is a special class of

polytopic models, where the weighting functions are decom-

posed to the tensor product of univariate functions.

Definition 4: (TP Model Transformation): TP Model

Transformation is a numerical method that transforms the

LPV/qLPV models to polytopic TP model, so that the LMI

methods developed for polytopic model based control can be

applied to the resulting model [15].

The polytopic TP representation of an LPV/qLPV system

can be obtained in various ways, of which the MVS-type

polytopic model is used in this work, defined below:

Definition 5 (MVS Polytopic TP model): The (6) polytopic

TP model, where the S ∈ S
J1×···×JN core tensor is con-

structed from the Sj1,...,jN matrices, in such a way that the

(S)jn=j n-mode subtensors construct the minimal volume

enclosing simplex for the

S ×n w
(n)
jn

(pn) (7)

trajectory for all n = 1...N .

In the proposed structure, a TP-type polytopic controller is

utilized, where the control signal is computed as:

u = −

(

F
N

⊠
n=1

w(n)(pn(t))

)

x. (8)

Feedback gains Fi1,i2,...,iN are stored in tensor F .

It is important to note that the discussed model repre-

sentations are also valid in discrete time domain, with no

fundamental restrictions. Further reading about the TP Model

Transformation, the MVS-type polytopic TP model generation

and manipulation methods can be found in [17], [18], [19],

[20].

IV. NONLINEAR SOFT TISSUE MODEL

Soft tissue models have been widely discussed in recent

years, in order to enhance the performance of common surgical

robotic interventions, such as cutting, indentation or grab-

bing [21]. A reliable tool–tissue interaction model is crucial

to achieve high precision force control, and the successful

implementation of haptic tools into telesurgical systems [22].

One of the most popular soft tissue model families are
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Fig. 1. The Wiechert model of viscoelasticity.

the mass–spring–damper tissue models, often referred to as

rheological soft tissue models. Force relaxation data from

various indentation experiments is often used for the valida-

tion of these models [23], [24]. Yamamoto investigated the

applicability of the most commonly used rheological models

in the case of point-to-point palpation [25]. Troyer et al.

created a hybrid rheological model for finite element modeling

implementation [26], while a nonlinear model approach, a

variant of the nonlinear Wiechert model was proposed and

recently validated by Takács et al. in [27]. The schematic figure

of the Wiechert model is shown in Fig. 1. This nonlinear model

introduces progressive stiffness characteristics as follows:

kj(χj) = Kje
κjχj(t), (9)

for j = 0, 1, 2, where χ is the elongation of the spring

elements, Kj and κj are mechanical parameters, which were

taken from experimental data through curve fitting. Introduc-

ing two virtual mass points xj , j = 1, 2 at the connection of

the spring and damper elements, the model has a total of 3

Degrees of Freedom (DoF). The input of the model is u(t)
deformation rate, while the output y(t) is the reaction force

arising during the compression of the tissue. The following set

of differential equations describe the system mechanics.

ẋ0(t) = u(t),

ẋ1(t) =
1

b1
K1(x0(t)− x1(t))e

κ1(x0(t)−x1(t)),

ẋ2(t) =
1

b2
K2(x0(t)− x2(t))e

κ2(x0(t)−x2(t)), (10)

y(t) = K0x0(t)e
κ0x0(t)+K1(x0(t)−x1(t))e

κ1(x0(t)−x1(t))+

+K2(x0(t)− x2(t))e
κ2(x0(t)−x2(t)), (11)

where bi, i = 1, 2 are the linear damping parameters, also

acquired from experimental data. The numeric values of the

mechanical parameters are listed in Table I.

V. POLYTOPIC TP MODEL OF THE SYSTEM

Regarding the Polytopic TP Model of the nonlinear system

described in (10) and (11), the detailed derivation of the model

can be found in [13], rearranged in a way that considers the so-

called error dynamics. The proposed qLPV model assumes that

the control goal is the force control of the surgical instrument

at the tissue surface contact.

Based on this, the state variables of the system are:

x(t) =





x0(t)
x1(t)
x2(t)



 (12)

while the output of the system is defined by y(t) The general
form of the qLPV model is

[

ẋ(t)
y(t)

]

=

[

A(p(t)) B

C(p(t)) 0

] [

x(t)
u(t)

]

, (13)

where

p(t) =
[

eκ1x1(t) eκ2x2(t) eκ0x0(t)
]

,

A(p) =





0 0 0
K1

b1
p1 −K1

b1
p1 0

K2

b2
p2 0 −K2

b2
p2



 ,B =





1
0
0



 ,

C(p) =
[

K0p3 +K1p1 +K2p2 −K1p1 −K2p2
]

.

In most engineering applications, it is more plausible to use

discrete time domain instead of continuous representations,

due to the sampled nature of modern control systems. By

introducing the discrete notation, at any time step t, one can

rewrite (13) as:
[

xt+1

yt

]

= S(p)

[

xt

ut

]

, (14)

where the discretized system matrix, according to the zero

order hold (ZOH) principle [28], can be written as

S(p) =

[

Ts ·A(p) + I Ts ·B

C(p) 0

]

. (15)

It is important to note that this is only an approximation of the

original, continuous-time system, however, from the controller

design point of view, more relevant for its better represen-

tation of digitally controlled robotic systems. Ts = 1 [ms]

denotes the discrete time-step. This value was selected based

on practical considerations, being a suitable processing time

for current surgical systems. The domains were obtained by

creating a rough estimate for the lower and upper limits of

xi, i = 1, 2, 3 during manipulations. The MVS polytopic TP

model form is written as:

S(p) = S
3
⊠

n=1
w(n)(pn,t) =

= S ×1 w
(1)(p1,t)×2 w

(2)(p2,t)×3 w
(3)(p3,t) =

=

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

w
(1)
j1

(p1)w
(2)
j2

(p2)w
(3)
j3

(p3)Sj1,j2,j3 , (16)

where the core tensor S contains the 2×2×2 vertexes and the
corresponding univariate linear weighting functions, as shown

in Fig. 2.



TABLE I
PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONSTANT COMPRESSION RATE TESTS.

K0 K1 K2 b1 b2 κ0 κ1 κ2 p1 p2 p3 c0

[N/m] [N/m] [N/m] [Ns/m] [Ns/m] [m−1] [m−1] [m−1] [−] [−] [−] [N/m]

2.03 0.438 0.102 5073 39.24 909.9 1522 81.18 0.9–213482 0.9–2.10592 0.9–1594.8 1.9792–11000

p1 = e
κ1x1
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Fig. 2. Weighting functions of the MVS polytopic TP model presented
by (13).

VI. CONTROLLER DESIGN

While (13) is mathematically suitable for stable state-

feedback controller design, its practical realization is chal-

lenging due to the issue that the states x1 and x2 cannot be

controlled directly, therefore their convergence to the desired

xi = 0 state is very slow. On the other hand, x0 can be

affected directly, not taking the system dynamics into con-

sideration, which subordinates the behavior to the dynamics

of the relaxation poles. Therefore, achieving x0 = 0 too soon

would mean that the output of the system will only depend

on the slowly converging states, which would not allow one

to realize the desired force control performance in surgical

robotics, in terms of speed and precision. To overcome these

limitations, this paper proposes an alternative approach to the

control problem, avoiding the setting of x0 to a stationary

state before the desired time. Let us consider the force output

described in (11) the state of the system to be controlled. The

derivative of expression (11) takes the form of

Ḟ = ẋ0c0(x0, x1, x2)+

+ ẋ1c1(x0, x1, x2) + ẋ2c2(x0, x1, x2), (17)

where

c0 = K0e
κ0x0(1 + κ0x0) +K1e

κ1(x0−x1)(1 + κ1(x0 − x1))+

+K2e
κ2(x0−x2)(1 + κ2(x0 − x2)),

c1 = −K1e
κ1(x0−x1)(1 + κ1K1(x0 − x1)),

c2 = −K2e
κ2(x0−x2)(1 + κ2K2(x0 − x2)).

Let us consider

∆F = F − Fd, (18)

the new single state variable of the qLPV system, where Fd

is the desired reaction force to be achieved. The input of the

system is u = ẋ0, and the derivative of ∆F can be written as

d

dt
∆F = ẋ0c0 + ẋ1c1 + ẋ2c2 − Ḟd. (19)

In the equilibrium state, d
dt
∆F = 0, therefore

ueqc0 + ẋ1c1 + ẋ2c2 − Ḟd = 0, (20)

where ueq stands for the input at the equilibrium state. Fol-

lowing the idea on the error dynamics presented in Section V,

the input of the second qLPV model can be introduced as:

∆u = u− ueq, (21)

where

ueq =
1

c0
(ẋ1c1 + ẋ2c2 − Ḟd).

This approach allows us to collect all system variables and

parameters in a single qLPV model parameter c0, resulting

in a very simple form. Introducing the time-discretization as

discussed above, we can write:

∆Ft+1 = ∆Ft + Ts · c0∆ut. (22)

The system matrix can be written in the form of:

S′(c0) =

[

1 Ts · c0
1 0

]

. (23)

The core tensor S ′ contains 2 vertexes

S ′

(1) =

[

1 0.009
1 0

]

, S ′

(2) =

[

1 11
1 0

]

, (24)

the corresponding weighting functions are w′, as shown in

Fig. 3. The parameter domain for c0 was determined numeri-

cally, and was refined due to experimental considerations. The

numerical values are listed in Table I.

The controller of the system is determined in the following

form:

u = −F(p)x, (25)
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Fig. 3. Weighting function of the MVS polytopic TP model presented by (22).

where in this particular case:

F(p) = F
1

⊠
n=1

w′ =

2
∑

i=1

Fiw
′

i(c0), (26)

requiring a stable system in the Lyapunov sense. The final

PDC (Parallel Distributed Compensator) controller was found

solving the LQ optimal control problem using convex opti-

mization algorithm provided by the Matlab tptool toolbox and

the YALMIP interface [29], [30]. The resulting core tensor

yields:

F =

[

0.36347
0.08747

]

. (27)

The schematic block diagram of the controlled system is

shown in Fig. 4.

Fig. 4. Schematic block diagram of the controlled system.

VII. RESULTS AND DISCUSSION

The proposed closed-loop controller solution was tested and

simulated on a typical gesture of a surgical interventions. The

process of grabbing, holding and releasing of the tissue was

investigated by setting Fd to a desired trajectory, followed

by the investigation of control performance, addressing ro-

bustness. Three specific cases were investigated in the latter

case: first, the real tissue parameters were ill-estimated, i.e.,

the reference tissue model parameters were 20% lower than the

parameters used for controller design. Second, the simulation

of a badly calibrated observer was done by linearly reducing

the reference tissue model output by 20%. Third, a time-delay

term of τ = 2 [ms] was added to the reference tissue state

output, modeling a slow observer behavior. Simulation results

and the force tracking error for all cases are shown in Fig. 5,

6, 7 and 8.

Fig. 5 shows that the proposed control scheme is suitable for

realizing force control in a stable and precise manner, utilizing

the selected soft tissue model. The tracking error for the

time [s]
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Fig. 5. Force tracking simulation results for modeling the grabbing, holding
and release of the tissue. The simulation was carried out on the discrete time
systems with the time-step of 1 [ms].
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Fig. 6. Tracking error results for modeling the grabbing, holding and release
of the tissue.

presented gesture did not exceed 5 mN, which is a favorably

low value for surgical interventions. The results were achieved

using the discrete sampling rate of 1 ms, which is a realizable

processing time for modern surgical systems in terms of

arithmetic performance. The proposed controller was tested

for robustness in the case of 3 different approaches, including

ill-conditioned parameter estimation and observer design, and

time-delay. The different behavior of these 3 cases is shown

in Fig. 9, indicating that there is no significant decrease in the

tracking performance under the mentioned disturbances. Minor

oscillation can be observed in the case of delayed feedback,

which, in when the delay time is increased, ultimately leads

to stability loss. Further investigation of the phenomena and

implementation of delay-based control schemes are part of our

future work.

VIII. CONCLUSION

In this paper a control scheme and the corresponding control

design methodology were presented for regulating interaction

force during autonomous manipulation of soft biological tis-

sues. The proposed approach utilizes recent results of poly-

topic model based control through the framework of Tensor

Product Model Transformation. The goal of the presented

control scheme is the regulation of reaction force during the

robotic interaction with soft tissues e.g., grasp–hold–release

cycles. Since biological tissues typically have highly nonlinear

dynamic behavior (progressive stiffness characteristics, stress

relaxation, etc.) time invariant linear controllers cannot provide

ideal performance across the whole operation domain.

Based on our previously published nonlinear tissue model,

the parameter-dependent error dynamics has been derived and
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Fig. 7. Force tracking simulation results for modeling the grabbing, holding
and release of the tissue, investigating the robustness of the proposed method.
Case 1: incorrect estimation of the tissue parameters in the reference tissue
model. Case 2: incorrectly calibrated observation, state output reduced by
20%. Case 3: slow observation, state feedback is delayed by 2 [ms].
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Fig. 8. Tracking error results for modeling the grabbing, holding and release
of the tissue, investigating the robustness of the proposed method.

the resulted system has been reformulated in order to avoid

the pitfall rendered by the slow dynamics of one state variable.

The reformulated system allows for concentrating the three

original parameter dependencies into a single parameter and

construct a feed forward term for the equilibrial input. An

additional state feedback controller was utilized that handle

the unmodeled dynamics and further disturbances. Since the

state variables cannot be measured in the real process, a

reference tissue model has been used. The state feedback

controller was designed by LMI-based synthesis providing the

variable gains as parameter dependent polytopic TP functions.

The overall system has been evaluated via numerical simula-

tions, with very promising results. The implementation of the

proposed method into supervised telemanipulation/telesurgical

equipments and into surgical, invasive intervention and virtual

trainers would enhance the performance of these systems,

allowing haptic sensing to the operator. Our future work

includes the experimental validation of the system in both

virtual and ex vivo environments, extending the model with

a discrete-time PDC state observer.
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Fig. 9. Tracking performance in the most critical point of the simulation
according to the tracking error results.
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[13] A. Takács, T. Haidegger, P. Galambos, J. Kuti, and I. Rudas, “Nonlinear
soft tissue mechanics based on polytopic tensor product modeling,”
in 2016 IEEE 14th International Symposium on Applied Machine
Intelligence and Informatics (SAMI), 2016, pp. 211–215.
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