53,030 research outputs found

    Nonlinear deterministic equations in biological evolution

    Full text link
    We review models of biological evolution in which the population frequency changes deterministically with time. If the population is self-replicating, although the equations for simple prototypes can be linearised, nonlinear equations arise in many complex situations. For sexual populations, even in the simplest setting, the equations are necessarily nonlinear due to the mixing of the parental genetic material. The solutions of such nonlinear equations display interesting features such as multiple equilibria and phase transitions. We mainly discuss those models for which an analytical understanding of such nonlinear equations is available.Comment: Invited review for J. Nonlin. Math. Phy

    Gauge-invariant description of several (2+1)-dimensional integrable nonlinear evolution equations

    Full text link
    We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov system. We show how these forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada-Kotera equation, Kaup-Kuperschmidt equation, dispersive long-wave system, Nizhnik-Veselov-Novikov equation, and modified Nizhnik-Veselov-Novikov equation. We consider Miura-type transformations between nonlinear equations in different gauges.Comment: Talk given at the Workshop "Nonlinear Physics: Theory and Experiment. V", Gallipoli (Lecce, Italy), 12-21 June, 200

    Linear Superposition in Nonlinear Equations

    Get PDF
    Even though the KdV and modified KdV equations are nonlinear, we show that suitable linear combinations of known periodic solutions involving Jacobi elliptic functions yield a large class of additional solutions. This procedure works by virtue of some remarkable new identities satisfied by the elliptic functions.Comment: 7 pages, 1 figur

    Superposition of Elliptic Functions as Solutions For a Large Number of Nonlinear Equations

    Full text link
    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions \cn(x,m) and \dn(x,m) with modulus mm, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schr\"odinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schr\"odinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schr\"odinger equation, λϕ4\lambda \phi^4, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of \dn^2(x,m), it also admits solutions in terms of \dn^2(x,m) \pm \sqrt{m} \cn(x,m) \dn(x,m), even though \cn(x,m) \dn(x,m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.Comment: 40 pages, no figure

    Nonclassical symmetries as special solutions of heir-equations

    Get PDF
    In (Nucci M.C. 1994, Physica D 78 p.124), we have found that iterations of the nonclassical symmetries method give rise to new nonlinear equations, which inherit the Lie point symmetry algebra of the given equation. In the present paper, we show that special solutions of the right-order heir-equation correspond to classical and nonclassical symmetries of the original equations. An infinite number of nonlinear equations which possess nonclassical symmetries are derived
    • …
    corecore