Abstract

We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov system. We show how these forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada-Kotera equation, Kaup-Kuperschmidt equation, dispersive long-wave system, Nizhnik-Veselov-Novikov equation, and modified Nizhnik-Veselov-Novikov equation. We consider Miura-type transformations between nonlinear equations in different gauges.Comment: Talk given at the Workshop "Nonlinear Physics: Theory and Experiment. V", Gallipoli (Lecce, Italy), 12-21 June, 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019