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Abstract

In Phys. D 78 (1994) 124, we have found that iterations of the nonclassical symmetries m
give rise to new nonlinear equations, which inherit the Lie point symmetry algebra of the
equation. In the present paper, we show that special solutions of the right-order heir-eq
correspond to classical and nonclassical symmetries of the original equations. An infinite n
of nonlinear equations which possess nonclassical symmetries are derived.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The most famous and established method for finding exact solutions of differential
tions is the classical symmetries method (CSM), also called group analysis, which
nated in 1881 from the pioneering work of Lie [19]. Many good books have been ded
to this subject and its generalizations [4,7,8,16,31,34,35,38].

The nonclassical symmetries method (NSM) was introduced in 1969 by Bluma
Cole [6] in order to obtain new exact solutions of the linear heat equation, i.e., solu
not deducible from the CSM. The NSM consists of adding the invariant surface con
to the given equation, and then applying the CSM. The main difficulty of this approa
that the determining equations are no longer linear. On the other hand, the NSM ma
more solutions than the CSM. The NSM has been successfully applied to various eq
[10,11,14,18,30],1 for the purpose of finding new exact solutions.

E-mail address: nucci@unipg.it.
1 Just to cite some of numerous papers on this subject.
0022-247X/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0022-247X(02)00706-0
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Galaktionov [13] and King [17] have found exact solutions of certain evolution e
tions which apparently do not seem to be derived by either the CSM or NSM. In [28
have shown how these solutions can be obtained by iterating the NSM. A special cas
NSM generates a new nonlinear equation (the so-calledG-equation [27]), which inherits
the prolonged symmetry algebra of the original equation. Another special case of the
is then applied to this heir-equation to generate another heir-equation, and so on. In
solutions of these heir-equations are exactly the solutions derived in [13] and [17].

In this paper, we show that the difficulty of finding nonclassical symmetries ca
overcome by determining the right-order heir-equation, and looking for a particular
tion which has an a priori known form. Both classical and nonclassical symmetries c
found in this way. Therefore, our method may give an answer to the question “How
one establish a priori if a given equation admits nonclassical symmetries?” We lim
analysis to single evolution equations in two independent variables. In the present
we will not deal with systems, although heir-equations for systems were introduced

In Section 2, first we recall what heir-equations are and then we present our meth
Section 3, some examples are given. In Section 4, we make some final comments.

The use of a symbolic manipulator becomes imperative, because the heir-equatio
be quite long: one more independent variable is added at each iteration. We emp
own interactive REDUCE programs [25,26] to generate the heir-equations.

2. Heir-equations and outline of the method

Let us consider an evolution equation in two independent variables and one dep
variable:

ut = H(t, x,u,ux,uxx, uxxx, . . .). (1)

The invariant surface condition is given by

V1(t, x,u)ut + V2(t, x,u)ux = F(t, x,u). (2)

Let us take the case withV1 = 0 andV2 = 1, so that (2) becomes2

ux = G(t, x,u). (3)

Then, an equation forG is easily obtained. We call this equationG-equation [27]. Its
invariant surface condition is given by

ξ1(t, x,u,G)Gt + ξ2(t, x,u,G)Gx + ξ3(t, x,u,G)Gu = η(t, x,u,G). (4)

Let us consider the caseξ1 = 0, ξ2 = 1, andξ3 = G, so that (4) becomes

Gx +GGu = η(t, x,u,G). (5)

Then, an equation forη is derived. We call this equationη-equation. Clearly

Gx +GGu ≡ uxx ≡ η. (6)

2 We have replacedF(t, x,u) with G(t, x,u) in order to avoid any ambiguity in the following discussion.
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We could keep iterating to obtain theΩ-equation, which corresponds to

ηx +Gηu + ηηG ≡ uxxx ≡ Ω(t, x,u,G,η), (7)

theρ-equation, which corresponds to

Ωx +GΩu + ηΩG +ΩΩη ≡ uxxxx ≡ ρ(t, x,u,G,η,Ω), (8)

and so on. Each of these equations inherits the symmetry algebra of the original eq
with the right prolongation: first prolongation for theG-equation, second prolongation f
theη-equation, and so on. Therefore, these equations are named heir-equations.

This iterating method yields both partial symmetries as given by Vorobev in [40]
differential constraints as given by Olver [32]. Also, it should be noticed that theu xx...︸︷︷︸

n

-

equation of (1) is just one of many possiblen-extended equations as defined by Guth
in [15]. More details can be found in [28].

Now, we describe the method that allows one to find nonclassical symmetries of
using a suitable heir-equation. For the sake of simplicity, let us assume that the h
orderx-derivative appearing in (1) is two, i.e.,

ut = H(t, x,u,ux,uxx). (9)

First, we use (9) to replaceut into (2), with the conditionV1 = 1, i.e.,

H(t, x,u,ux,uxx)+ V2(t, x,u)ux = F(t, x,u). (10)

Then, we generate theη-equation withη = η(x, t, u,G) and replaceux = G, uxx = η in
(10), i.e.,

H(t, x,u,G,η)= F(t, x,u)− V2(t, x,u)G. (11)

For Dini’s theorem, we can isolateη in (11), e.g.,

η = [
h1(t, x,u,G)+ F(t, x,u)− V2(t, x,u)G

]
h2(t, x,u,G), (12)

wherehi(t, x,u,G) (i = 1,2) are known functions. Thus, we have obtained a partic
solution of η which must yield an identity if replaced into theη-equation. The only
unknowns areV2 = V2(t, x,u) andF = F(t, x,u). Let us recall to the reader that there a
two sorts of nonclassical symmetries, those where in (2) the infinitesimalV1 is nonzero,
and those where it is zero [10]. In the first case, we can assume without loss of gen
that V1 = 1, while in the second case we can assumeV2 = 1, which corresponds t
generate theG-equation. If there exists a nonclassical symmetry,3 our method will recove
it. Otherwise, only the classical symmetries will be found. If we are interested in fin
only nonclassical symmetries, then we should imposeF andV2 to be functions only of the
dependent variableu. Moreover, any such solution should be singular, i.e., should not
a group.

If we are dealing with a third order equation, then we need to construct the heir-eq
of order three, i.e., theΩ-equation. Then, a similar procedure will yield a particu
solution of theΩ-equation given by a formula similar to

3 Of course, we mean one such thatV1 �= 0, i.e.,V1 = 1.
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Ω = [
h1(t, x,u,G,η)+F(t, x,u)− V2(t, x,u)G

]
h2(t, x,u,G,η), (13)

wherehi(t, x,u,G,η) (i = 1,2) are known functions.
In the case of a fourth order equation, we need to construct the heir-equation o

four, i.e., theρ-equation. Then, a similar procedure will yield a particular solution of
ρ-equation given by a formula similar to

ρ = [
h1(t, x,u,G,η,Ω)+ F(t, x,u)− V2(t, x,u)G

]
h2(t, x,u,G,η,Ω), (14)

wherehi(t, x,u,G,η,Ω) (i = 1,2) are known functions.
And so on.

3. Some examples

We present some examples of how the method works. We consider some fa
of evolution equations of second and third order. For each of them, we derive th
responding heir-equations up to the appropriate order. Then, we look for the par
solution which yields nonclassical symmetries. We would like to underline how eas
method is in comparison with the existing one. The only difficulty consists is der
the heir-equations, which become longer and longer. However, they can be automa
determined by using any computer algebra system.

3.1. Example 1: ut = uxx +R(u,ux)

Let us consider the following family of second order evolution equations:

ut = uxx +R(u,ux) (15)

with R(u,ux) a known function ofu and ux . Famous equations known to poss
nonclassical symmetries belong to (15): Burgers’ [4], Fisher’s [9], real Newell–W
head’s [24], Fitzhugh–Nagumo’s [30], and Huxley’s equation [5,9].

TheG-equation of (15) is

RG(GGu +Gx)+GRu + 2GxuG+GuuG
2 −GuR −Gt +Gxx = 0. (16)

Theη-equation of (15) is

2RuGηG+RGGη2 +RGηx +GRGηu +RuuG
2 −GRuηG +Ruη + 2ηxGη

+ 2ηuGηG+ ηGGη2 − ηt + 2ηxuG+ ηxx + ηuuG
2 −Rηu = 0. (17)

The particular solution (12) that we are looking for is

η = −R(u,G) +F(t, x,u)− V2(t, x,u)G, (18)

which replaced into (17) yields an overdetermined system in the unknownsF andV2 if
R(u,G) has a given expression. Otherwise, after solving a first order linear partial diff
tial equation inR(u,G), we obtain that Eq. (15) may possess a nonclassical symmet
with V1 = 1,V2 = v(u), F = f (u) if R(u,ux) has the following form:
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R(u,ux) = ux

f 2

((
−df

du
fux + dv

du

)
f u2

x +Ψ (ξ)u2
x + 2f 2v − 3fuxv

2 + u2
xv

3
)
,

(19)

with f, v arbitrary functions ofu, andΨ arbitrary function of

ξ = f (u)

ux
− v(u). (20)

This means that infinitely many cases can be found.
Here we present just three examples of (19) which are new, as far as we know.

tion (15) withR(u,ux) given by

R(u,ux) = (2ux + u4)
ux

u
(21)

admits a nonclassical symmetry withv = u3/2 andf = −u7/12. It is interesting to notice
that the corresponding reduction leads to the solution of the following ordinary differe
equation inu andx,

uxx = −2u2
x/u− 3u3ux/2− u7/12,

which is linearizable. In fact, it admits a Lie symmetry algebra of dimension eight [20
A second example is given by Eq. (15) with

R(u,ux) = ux

(
16 log

((−a2
1u

3 − 3a1a2u
2 − 2a1a6u

2 − 2a1uxu+ 4a3a7u+ 4a4a7

− 4a5a7ux

)
/(4a7ux)

)
a2

7u
2
x + a5

1u
7 + 7a4

1a2u
6 + 4a4

1a6u
6 + 15a3

1a
2
2u

5

+ 16a3
1a2a6u

5 − 8a3
1a3a7u

5 − 8a3
1a4a7u

4 + 4a3
1a

2
6u

5 + 9a2
1a

3
2u

4

+ 12a2
1a

2
2a6u

4 − 32a2
1a2a3a7u

4 − 32a2
1a2a4a7u

3 + 4a2
1a2a

2
6u

4

− 16a2
1a3a6a7u

4 − 16a2
1a4a6a7u

3 − 24a1a
2
2a3a7u

3 − 24a1a
2
2a4a7u

2

− 16a1a2a3a6a7u
3 − 16a1a2a4a6a7u

2 + 16a1a
2
3a

2
7u

3 + 32a1a3a4a
2
7u

2

+ 16a1a
2
4a

2
7u+ 16a2a

2
3a

2
7u

2 + 32a2a3a4a
2
7u+ 16a2a

2
4a

2
7

)
/(

a4
1u

6 + 6a3
1a2u

5 + 4a3
1a6u

5 + 9a2
1a

2
2u

4 + 12a2
1a2a6u

4 − 8a2
1a3a7u

4

− 8a2
1a4a7u

3 + 4a2
1a

2
6u

4 − 24a1a2a3a7u
3 − 24a1a2a4a7u

2

− 16a1a3a6a7u
3 − 16a1a4a6a7u

2 + 16a2
3a

2
7u

2 + 32a3a4a
2
7u

+ 16a2
4a

2
7

)
, (22)

whereaj (j = 1, . . . ,7) are arbitrary constants. It admits a nonclassical symmetry wit

v = a1u + a2 + 2a6

2

and

f = −a2
1u

3 − 3a1a2u
2 − 2a1a6u

2 + 4a3a7u+ 4a4a7

4
.
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A third example is given by Eq. (15) with

R(u,ux) = ux

sin(u)2
(
cos(u)3u2

x − 3 cos(u)2 sin(u)ux + 2 cos(u)sin(u)2

− cos(u)sin(u)ux − sin(u)2u2
x +Ψ (ξ)u2

x

)
, (23)

whereΨ is an arbitrary function ofξ = (−cos(u)ux +sin(u))/ux . It admits a nonclassica
symmetry withv = cos(u) andf = sin(u).

The subclass of Eq. (15) withR = r(u) was considered in [10], where classical a
nonclassical symmetries were retrieved. Just to show that our method is a lot simpl
the existing one, we give the details of the calculations in the case

r(u) = −u3 − bu2 − cu− d,

which admits a nonclassical symmetry [10, Ansatz 4.2.1]. We replace (18) into (17),
becomes a third degree polynomial inG. The corresponding coefficients (let us call th
mm3,mm2,mm1,mm0, respectively) must all become equal to zero. Frommm3 = 0, we
obtain

V2 = A1(t, x)u+A2(t, x),

while mm2= 0 yields

F = A3(t, x)u+A4(t, x)+ ∂A1

∂x
u2 − A2

1u
3

3
−A1A2u

2

with Ak(t, x) (k = 1, . . . ,4) arbitrary functions. Now, none of the remaining arbitrary fu
tions depends onu. Sincemm1 is a third degree polynomial inu, then its coefficients (le
us call themmm1k3,mm1k2,mm1k1,mm1k0, respectively) must all become equal
zero. Equalingmm1k3 to zero yields two cases: eitherA1 = 0, orA2

1 = 9/2. If we assume
A1 = 3/

√
2, thenmm1k2= 0,mm1k1= 0,mm1k0= 0 lead toA2 = b/

√
2,A4 = −3c/2,

A3 = −3d/2, respectively. These values yieldmm0 = 0. Thus, the nonclassical symmet
found in [10] is recovered, i.e.,

V2 = b + 3u√
2

, F = 3

2
(−u3 − bu2 − cu− d). (24)

A similar result holds if we assumeA1 = −3/
√

2, thenF is the same, andV2 = −(b +
3u)/

√
2. The caseA1 = 0 leads to eitherV2 = 1, F = 0 (trivial classical symmetry), o

d = −b(2b2 − 9c)/27 with

V2 = A2, F = −1

3
(b + 3u)

∂A2

∂x
,

whereA2(t, x) must satisfy

∂A2

∂t
− 3

∂2A2

∂x2 + 2A2
∂A2

∂x
= 0,

3
∂3A2

∂x3 − 3A2
∂2A2

∂x2 + (b2 − 3c)
∂A2

∂x
= 0. (25)

Solving (25) results into two more cases which can be found in [10, Table 2], fourth
fifth row, respectively.
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3.2. Example 2: ut = u−2uxx +R(u,ux)

Let us consider another family of second order evolution equations:

ut = u−2uxx +R(u,ux). (26)

TheG-equation of (26) is

RG(GGu +Gx)u
3 + u3GRu + 2uGGxu + uG2Gx − u3RGu

− 2G2Gu − u3Gt + uGxx − 2GGx = 0. (27)

Theη-equation of (26) is

2RuGηGu4 +RGGη2u4 +RGηxu
4 +RGηuGu4 +RuuG

2u4 −RuηGGu4

+Ruηu
4 + 2ηxGηu2 + 2ηuGηGu2 + ηGGη2u2 − 2ηGηGu− ηtu

4 + 2ηxuGu2

+ ηxxu
2 − 4ηxGu+ ηuuG

2u2 − ηuRu4 − 4ηuG
2u− 2η2u+ 6ηG2 = 0. (28)

The particular solution (12) that we are looking for is

η = [−R(u,G)+ F(t, x,u)− V2(t, x,u)G
]
u2, (29)

which replaced into (28) and imposingV2 = v(u), F = f (u) yields a first order linea
partial differential equation inR(u,ux). Then, Eq. (26) may possess a nonclassical s
metry (2) withV1 = 1,V2 = v(u), F = f (u), if R(u,ux) has the following form:

R(u,ux) = −vux + f − df

du

u2
x

uf
+
(
dv

du
f +Ψ (ξ)

)
u3
x

f 2u2 , (30)

with f, v arbitrary functions ofu andΨ an arbitrary function of the sameξ as given in (20).
This means that infinitely many cases can be found.

Here we present just two examples of (30) which are new, as far as we know. In
examples,Ψ is an arbitrary function ofξ as shown.

Equation (26) withR(u,ux) given by

R(u,ux) = 2
u3
x

u6
+Ψ

(
u5

ux

− u2
)

u3
x

u12
− 5

u2
x

u3
− (1+ u2)ux + u5 (31)

admits a nonclassical symmetry withv = u2 + 1 andf = u5.
Equation (26) withR(u,ux) given by

R(u,ux) = Ψ

(
1

uux

− u

)
u3
x + u3

x

u
+ u2

x

u3
− uux + 1

u
(32)

admits a nonclassical symmetry withv = u andf = 1/u.
Now we would like to show how our method works with an equation which does

admit nonclassical symmetries. Let us consider Eq. (26) withR = −2u−3u2
x + 1 [32,

p. 519], i.e.,

ut = (u−2ux)x + 1. (33)

Its η-equation admits a solution of the type (29) only if

V2 = c1 + x
, F = −2u

,

c3 − 2t c3 − 2t
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wherecj (j = 1,3) are arbitrary constants. It corresponds to the three-dimensiona
point symmetry algebra admitted by (33). Nonclassical symmetries do not exist. How
it is known that Eq. (33) admits higher order symmetries [22], which may be retri
searching for particular solutions of its higher order heir-equations, as we conjecture
final comments.

3.3. Example 3: ut = uxxx +R(u,ux,uxx)

Let us consider the following family of third order evolution equations:

ut = uxxx +R(u,ux,uxx), (34)

with R(u,ux,uxx) a known function ofu, ux anduxx . We derive theΩ-equation4 of (34)
and look for the particular solution (13), i.e.,

Ω = −R(u,G,η)+ F(t, x,u)− V2(t, x,u)G, (35)

which replaced into theΩ-equation and assumingV2 = v(u), F = f (u) yields the follow-
ing first order linear partial differential equation inR(u,ux,uxx) ≡ R(u,G,η):

R(u,G,η)
d

du
f (u)+ ∂

∂η
R(u,G,η)G3 d2

du2
v(u) − ∂

∂η
R(u,G,η)G2 d2

du2
f (u)

− 3Gη
d2

du2f (u)− ∂

∂η
R(u,G,η)η

d

du
f (u)− ∂

∂G
R(u,G,η)G

d

du
f (u)

+ 6G2η
d2

du2v(u) − 3
d

du
v(u)v(u)G2 + 3G

d

du
v(u)f (u)− 4R(u,G,η)

d

du
v(u)G

+ ∂

∂G
R(u,G,η)G2 d

du
v(u) + 3

∂

∂η
R(u,G,η)Gη

d

du
v(u) − ∂

∂u
R(u,G,η)f (u)

+ 3η2 d

du
v(u) −G3 d3

du3
f (u)+G4 d3

du3
v(u) = 0. (36)

Thus, Eq. (34) may possess a nonclassical symmetry (2) withV1 = 1,V2 = v(u), F = f (u)

if R(u,ux,uxx) ≡ R(u,G,η) satisfies (36). Note that the complete integral of (36) invol
an arbitrary functionΦ = Φ(ξ1, ξ2) of ξ1 ≡ ξ as given in (20) and

ξ2 = f (u)

u3
x

(
uxx f (u)− u2

x

d

du
f (u)+ u3

x

d

du
v(u)

)
. (37)

This means that infinitely many cases can be found.
Here we present two classes of solutions of (36) which have never been descri

far as we know.
Equation (34) withR(u,ux,uxx) given by

−3
u6

ux

− 15u4 − 6
uxxu

3

ux

− 12uxu
2 − (3ux + 12uxx)u+ 12u2

x

4 Here we do not present anyone of the heir-equations due to their long expression.
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dified
− 3
u2
xx

ux

+ −6u2
x + 3uxxux

u
+ 3

u2
x

u2
− 4

u3
x

u3
+ 3

u3
x

u4
− u4

x

u5
+ u4

x

u6

− u4
x

u9Φ

(
u(ux + u2)

ux

,−u3(uxxu
3 − u3

x − 3u2
xu

2)

u3
x

)
(38)

admits a nonclassical symmetry withv = 1− u andf = u3.
Equation (34) withR(u,ux,uxx) given by

1

4u3ux(−2
√
uux + u)

(
12u3uxxu

2
x + 12u9/2u2

x + 6u3/2u5
x − 3u4

xu
2

− 48u3
xu

4 + 24u7/2uxu
2
xx − 24u5/2u3

xuxx

+ 4(u− 2
√
uux)u

5
xΦ

(
−

√
uux − u

ux

,u

(
uxxu− u2

x + u3
x

2
√
u

)
u−3
x

)

− 36u3ux
5 + 64u7/2u4

x + 8u5/2u6
x − 12u4u2

xx

)
(39)

admits a nonclassical symmetry withv = √
u andf = u.

Finally, we would like to show how our method works with a third order evolu
equation which does not admit nonclassical symmetries. Let us consider the mo
Korteweg–de Vries equation (mKdV):

ut = uxxx − 6u2ux. (40)

In [27], theG-equation of (40) was derived:

3GGxxu + 3GGuGxu + 3GxGxu +G3Guuu + 3G2Gxuu + 3G2GuGuu

+ 3GGxGuu −Gt +Gxxx − 6u2Gx − 12uG2 = 0. (41)

Theη-equation of (40) is

η3ηGGG + 3η2ηxGG + 3η2ηuG + 3η2ηuGGG+ 3η2ηGηGG + 3ηηxηGG + 3ηηxxG

+ 3ηηxu + 6ηηxuGG+ 3ηηxGηG + 3ηηuηGGG+ 3ηηuuG+ 3ηηuuGG2

+ 3ηηuGηGG− 36ηuG− ηt + 3ηxηxG + 3ηxηuGG− 6ηxu2 + ηxxx + 3ηxxuG

+ 3ηxuuG
2 + 3ηxGηuG+ 3ηuηuGG2 + ηuuuG

3 + 12ηGuG
2 − 12G3 = 0. (42)

TheΩ-equations of (40) is

6ΩxuηΩG+ 6ΩxGηΩη + 3ΩxxηΩ + 3ΩxηΩηΩ + 3ΩxηΩx + 3ΩxηΩuG

+ 3ΩxηΩGη + 6ΩuGηΩηG+ 3ΩuuηΩG2 + 3ΩuηΩηΩG+ 3ΩuηΩxG

+ 3ΩuηΩuG
2 + 3ΩuηΩGηG+ 3ΩuηΩη + 3ΩGGηΩη2 + 3ΩGηΩηΩη

+ 3ΩGηΩxη + 3ΩGηΩuηG+ 3ΩGηΩGη2 + 3ΩGηΩ
2 +ΩηηηΩ

3 + 3ΩxηηΩ
2

+ 3ΩuηηΩ
2G+ 3ΩGηηΩ

2η + 3ΩηηΩηΩ
2 + 3ΩηηΩxΩ + 3ΩηηΩuΩG

+ 3ΩηηΩGΩη + 36ΩηηuG+ 12ΩηG
3 −Ωt + 6ΩxuGηG+ 3ΩxuuG

2
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+ 3Ωxuη + 3ΩxGGη
2 + 3ΩxGΩ +Ωxxx + 3ΩxxuG+ 3ΩxxGη − 6Ωxu

2

+ 3ΩuGGη
2G+ 3ΩuGΩG+ 3ΩuGη

2 +ΩuuuG
3 + 3ΩuuGηG

2 + 3ΩuuηG

+ΩGGGη3 + 3ΩGGΩη + 12ΩGuG
2 − 48ΩuG− 36η2u− 72ηG2 = 0. (43)

The particular solution (13) that we are looking for is

Ω = 6u2G+ F(t, x,u)− V2(t, x,u)G, (44)

which replaced into (43) yields an overdetermined system in the unknownsF andV2. It is
very easy to prove that nonclassical symmetries do not exist, a well-known result. In
we obtain the classical symmetries admitted by (40), i.e.,

V2 = c2 + x

c1 + 3t
, F = − u

c1 + 3t
, (45)

with ci (i = 1,2) arbitrary constants.

4. Final comments

We have determined an algorithm which is easier to implement than the usual m
to find nonclassical symmetries admitted by an evolution equation in two indepe
variables. Moreover, one can retrieve both classical and nonclassical symmetries w
same method. Last but not least, we have shown that our method is able to retri
infinite number of equations admitting nonclassical symmetries.

Using the heir-equations raises many intriguing questions which we hope to add
future work:

• Could an a priori knowledge of the existence of nonclassical symmetries apar
classical be achieved by looking at the properties of the right-order heir-equa
We have shown that our method leads to both classical and nonclassical symm
Nonclassical symmetries could exist if we imposeF andV2 to be functions only of
the dependent variableu in either (12), or (13), or (14), or. . . . Of course, any suc
solution ofF andV2 does not yield a nonclassical symmetry, unless it is isolated,
does not form a group.

• What is integrability? The existence of infinitely many higher order symmetries is
of the criteria [22,33]. In [29], we have shown that invariant solutions of the h
equations yield Zhdanov’s conditional Lie–Bäcklund symmetries [43]. Higher o
symmetries may be interpreted as special solutions of heir-equations (up to
order? see [33,37]). Another criterion for integrability consists of looking for Bäck
transformations [2,36]. In [27], we have found that a nonclassical symmetry o
G-equation (41) for the mKdV equation (40) gives the known Bäcklund transform
between (40) and the KdV equation [23]. Another integrability test is the Pain
property [41] which when satisfied leads to Lax pairs (hence, inverse scat
transform) [2], Bäcklund transformations, and Hirota bilinear formalism [39]. In [
the singularity manifold of the mkdV Eq. (40) was found to be connected t
equation which is exactly theG-equation (41). Could heir-equations be the comm
link among all the integrability methods?
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• In order to reduce a partial differential equation to ordinary differential equations
of the first things to do is find the admitted Lie point symmetry algebra. In mos
stances, it is very small, and therefore not many reductions can be obtained. Ho
if heir-equations are considered, then many more ordinary differential equation
be derived using the same Lie algebra [3,21,28]. Of course, the classification
dimension subalgebras [42] becomes imperative [21]. In the case of known inte
equations such as (40), it would be interesting to investigate which ordinary d
ential equations result from using the admitted Lie point symmetry algebra an
corresponding heir-equations. Do all these ordinary differential equations posse
Painlevé property (see the Painlevé conjecture as stated in [1])?

• In recent years, researchers often find solutions of partial differential equations
apparently do not come from any symmetry reduction. Are the heir-equations th
mate method which keeps Lie symmetries at center stage?
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