1 research outputs found

    NLOS Mitigation in TOA-based Indoor Localization by Nonlinear Filtering under Skew t-distributed Measurement Noise

    Get PDF
    Wireless localization by time-of-arrival (TOA) measurements is typically corrupted by non-line-of-sight (NLOS) conditions, causing biased range measurements that can degrade the overall positioning performance of the system. In this article, we propose a localization algorithm that is able to mitigate the impact of NLOS observations by employing a heavy-tailed noise statistical model. Modeling the observation noise by a skew t-distribution allows us to, on the one hand, employ a computationally light sigma-point Kalman filtering method while, on the other hand, be able to effectively characterize the positive skewed non-Gaussian nature of TOA observations under LOS/NLOS conditions. Numerical results show the enhanced performance of such approach
    corecore