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ABSTRACT
Wireless localization by time-of-arrival (TOA) measurements
is typically corrupted by non-line-of-sight (NLOS) condi-
tions, causing biased range measurements that can degrade
the overall positioning performance of the system. In this
article, we propose a localization algorithm that is able to
mitigate the impact of NLOS observations by employing a
heavy-tailed noise statistical model. Modeling the observa-
tion noise by a skew t-distribution allows us to, on the one
hand, employ a computationally light sigma-point Kalman fil-
tering method while, on the other hand, be able to effectively
characterize the positive skewed non-Gaussian nature of TOA
observations under LOS/NLOS conditions. Numerical results
show the enhanced performance of such approach.

Index Terms— Robust filtering, NLOS mitigation, skew
t-distribution, sigma-point Kalman filter

1. INTRODUCTION

The problem under study concerns the derivation of efficient
filtering methods, that are robust in challenging applica-
tions/scenarios such as the LOS/NLOS propagation condi-
tions in indoor localization systems [1]. The state-space
models (SSM) of interest are expressed as

xk = fk−1 (xk−1) + uk, uk ∼ N (0,Qk), (1)
yk = hk (xk) + nk, nk ∼ non-Gaussian (2)

where xk ∈ Rnx and yk ∈ Rny are the states and observa-
tions of the system at time k. f and h are the process and mea-
surement functions, known and possibly nonlinear, and both
process and observation noises, uk and nk, assumed mutu-
ally independent. In real–life systems we do not have com-
plete knowledge of the system dynamics, thus the measure-
ment noise statistics are assumed to be unknown to a certain
extent. In contrast, the process noise covariance Qk is consid-
ered known in this contribution. The components of the mea-

∗This work has been partially supported by the Spanish Ministry of Econ-
omy and Competitiveness through project TEC2015-69868-C2-2-R (AD-
VENTURE) and by the Government of Catalonia under 2014–SGR–1567.

surement noise are assumed to be independent, each one dis-
tributed according to a parametric heavy-tailed non-Gaussian
distribution, nk,i ∼ D(θi)|i=1,...,ny

, with θi representing the
unknown parameters of the non-Gaussian distribution.

A key point is to assume that the univariate measurement
noise component distributions,D(θi), can be written in a con-
ditionally (hierarchical) Gaussian form. These distributions
are typically written using symmetric Gaussian scale mixtures
(a.k.a. scale mixture of normals) [2, 3], which include among
others the Gaussian, Student-t and symmetric α-stable (SαS)
distributions. But skewness can also be accounted within this
context, for instance using the normal variance-mean repre-
sentation introduced in [4] or the skew t distribution hierar-
chical formulation given in [5].

In the literature, some contributions dealing with condi-
tionally Gaussian SSMs, heavy-tailed and skewed distribu-
tions were proposed. A particle filter (PF) solution for linear
SSMs in SαS noise was presented in [6]. This idea was
further explored in [7] for nonlinear systems, and general-
ized to other symmetric distributions in [8]. The key idea
was to take advantage of the conditionally Gaussian form
and use a sigma-point filter [9, 10] for the nonlinear state
estimation. A robust filtering variational Bayesian (VB) ap-
proach was considered for linear systems in [11], and further
extended to nonlinear SSMs in [12] considering a symmetric
Student-t measurement noise. But symmetric distributions
may not always be appropriate to characterize the system
noise. Recently, two interesting approaches to deal with lin-
ear SSMs under skewed noise was proposed, the first one uses
a marginalized PF solution [13] and the other considers a VB
solution [14]. Notice that these contributions deal with either
nonlinear systems corrupted by symmetric distributed noises
or linear SSMs under skewed noise. Regarding the problem
at hand, a skewed t-distributed noise was recently proposed
to address the NLOS problem in TOA-based positioning [15].

In this contribution, we are interested in a TOA-based
tracking application, where the LOS/NLOS propagation is
modeled using a skew t-distributed measurement noise [15].
Whereas a sigma-point filter deals with the nonlinear state es-
timation problem, a learning method is used to estimate the
time-varying skew t-distribution parameters.
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2. SYSTEM MODEL

2.1. TOA-based Localization

We consider a localization problem in which a target is mov-
ing in a plane and a set of N sensors are placed at known
locations to measure range information to the target. Ranges
are then processed to track the target. The state vector is com-
posed of position and velocity components, pk , (xk, yk)

>

and vk , (ẋk, ẏk)
>, respectively. A linear constant acceler-

ation model is adopted for state evolution, and thus
xk
yk
ẋk
ẏk


︸ ︷︷ ︸

xk

=


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

F

xk−1+


T 2

2 0

0 T 2

2
T 0
0 T


︸ ︷︷ ︸

G

uk ,

where the zero-mean Gaussian process noise uk models an
acceleration of 0.1 m/s2, i.e., uk ∼ N (0, 10−4 · I2).

Let us use xk,i = [xk,i, yk,i]
> to denote the known 2-

dimensional position of the i-th anchor node. Then, the ob-
served range from each node i to the target, denoted as ρ̂k,i are
modeled as ρ̂k,i = ρi(xk) + nk,i, i ∈ {1, . . . , N}, with nk,i
denoting the ranging error and ρi(xk) , ρk,i = ‖xk − xk,i‖
the true distance from the i-th node to the target node at k.
The resulting measurement equation is

ρk = [ρk,1, · · · , ρk,N ]
> (3)

=

 ‖xk − xk,1‖
...

‖xk − xk,N‖


︸ ︷︷ ︸

hk(xk)

+

 nk,1
...

nk,N


︸ ︷︷ ︸

nk

, (4)

with measurement noise nt being nominally distributed ac-
cording to nt ∼ N (0, σ2 · IN ). The standard deviation of the
range estimates, σ, depends on the technology under consid-
eration. For instance, for Global Navigation Satellite Systems
(GNSS) receivers without additional aiding this could be in
the order of 5 to 10 meters. In the case of ultra-wideband
(UWB) devices this could be reduced to 0.1 to 1 meter. We
use the latter technology in the simulations section.

2.2. Measurement noise for NLOS characterization

Under NLOS conditions, the Gaussian noise modeling is
known to be too simplistic, and the receiver is likely to es-
timate distances to the anchors larger than the true ones [1].
Such biased range estimates may be seen as outliers to the
nominal model. To solve this problem and get a more ac-
curate observation model, one must resort to heavy-tailed
noise distributions to effectively model outliers and positive
skewed distributions to cope with the true NLOS behavior.

As recently proposed in [15], the observation noise com-
ponents are assumed to be independently univariate skewed
t-distributed [5] to properly model the NLOS scenario,

nk,i ∼ ST
(
µ, σ2, λ, ν

)
, (5)

which is parametrized by its location, scale and skewness
parameters, µ ∈ R, σ2 ∈ R+, and λ ∈ R, respectively,
and the degrees of freedom ν ∈ R+. For λ = 0 the skew
t-distribution becomes the standard Student’s t-distribution
T
(
µ, σ2, ν

)
; if ν → ∞ it becomes the skew normal distri-

bution SN
(
µ, σ2, λ

)
; and if in addition λ → 0 it becomes

the normal distribution N
(
µ, σ2

)
.

It was pointed out in the introduction that we are in-
terested in hierarchical representations of the non-Gaussian
noise distribution. A skew t-distribution hierarchical repre-
sentation allowing a conditionally Gaussian form is

n|γ, τ ∼ N
(
µ+ λγ, τ−1σ2

)
(6)

γ|τ ∼ N+

(
0, τ−1

)
; τ ∼ G

(ν
2
,
ν

2

)
(7)

where N+ (·, ·) and G (·, ·) are the positive truncated normal
and gamma distributions. While τ produces the heavy-tails,
γ controls the skewness of the distribution.

2.3. SSM for the TOA-based localization problem

Considering the localization problem at hand, together with
the skewed t-distribution hierarchical Gaussian form pre-
sented in the previous section, the SSM is defined as

xk = Fxk−1 + Guk, uk ∼ N (0,Q), (8)

ρk = hk (xk) + nk, nk,i ∼ ST (µ, σ2, λ, ν) (9)

where the measurement noise components are distributed as

nk,i|γk,i, τk,i ∼ N
(
mk,i, s

2
k,i

)
(10)

mk,i = µ+ λγk,i ; s
2
k,i = τ−1k,i σ

2 (11)

γk,i|τk,i ∼ N+

(
0, τ−1k,i

)
; τk,i ∼ G

(ν
2
,
ν

2

)
(12)

If we define θ = [µ, σ2, λ, ν], ψk,i(θ) = [γk,i(θ), τk,i(θ)]
and φk = [ψk,1(θ), . . . ,ψk,N (θ)], the complete measure-
ment noise can be rewritten as

nk|φk ∼ N (mk(φk),Rk(φk)) (13)

mk(φk) = [mk,1(ψk,1(θ)), . . . ,mk,N (ψk,N (θ))]>

Rk(φk) = diag
(
s2k,1(ψk,1(θ)), . . . , s

2
k,N (ψk,N (θ))

)
Using these definitions we can define the pseudo-observation

yk , ρk −mk(φk), which is instrumental to deal with the
noise mean with the filtering method.



3. JOINT TRACKING AND MODEL ESTIMATION

We are interested in tracking the states of the system and,
simultaneously, inferring the unknown model parameters.
The joint a posteriori distribution casts all the information
about the states and the system model provided by the ob-
servations. Using the SSM formulation (8)-(9), and the
conditionally Gaussian form in (13), the conditional pos-
terior p(xk|φk,y1:k) turns to be Gaussian and thus can be
computed using a Gaussian filter [16]. We propose to use
the quadrature Kalman filter (QKF) [9, 10], which resorts to
Gauss-Hermite quadrature rules to approximate the integrals
in the optimal solution (sketched in Algorithm 1).

3.1. Gaussian filtering

The optimal Bayesian filtering solution is given by the pos-
terior distribution p(xk|φk,y1:k), which is typically com-
puted using two steps, prediction and update. If the sys-
tem is nonlinear and Gaussian, both the transition density
p(xk|xk−1) and the likelihood p(yk|xk,φk) are Gaussian
distributed. Under this assumption, the predictive and pos-
terior densities can be approximated as p(xk|φk,y1:k−1) =
N
(
x̂k|k−1,Σk|k−1

)
and p(xk|φk,y1:k) = N

(
x̂k|k,Σk|k

)
,

respectively [9] with1

x̂k|k−1 =

∫
f(xk−1)p(xk−1|φk−1,y1:k−1)dxk−1

Σk|k−1 =

∫
f2(xk−1)p(xk−1|φk−1,y1:k−1)dxk−1 − x̂2

k|k−1 + Q

x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
s.t. yk , ρk −mk(φk)

Σk|k = Σk|k−1 −KkΣy,k|k−1K
>
k

where the Kalman gain, measurement prediction, innovation
covariance and cross-covariance are obtained as

Kk = Σxy,k|k−1Σ
−1
y,k|k−1

ŷk|k−1 =

∫
h(xk)p(xk|φk−1,y1:k−1)dxk

Σy,k|k−1 =

∫
h2(xk)p(xk|φk−1,y1:k−1)dxk − ŷ2

k|k−1 + Rk(φk)

Σxy,k|k−1 =

∫
xkh>(xk)p(xk|φk−1,y1:k−1)dxk − x̂k|k−1ŷ

>
k|k−1

3.2. Estimation of noise latent variables φk

In practice, at time k, the filter requires a particular value of
mk(φk) and Rk(φk) to be executed. This means a particular
realization of the random variables γk,i and τk,i for each node
i. The approach we followed operates in the update step of the
filter, where the observations can be considered independent
among anchor nodes and thus to follow a N (yk,i;h(xk) +

1We write (x)2, (y)2, f2(·) and h2(·) as the shorthand for xx>, yy>,
f(·)f>(·) and h(·)h>(·), respectively. We omitted the dependence with
time of fk−1(·) and hk(·) for the sake of clarity.

Algorithm 1 Quadrature Kalman Filter (QKF)
Require: y1:K , x̂0|0, Σ0|0 = S0|0S

>
0|0, Q and θ

1: Define M sigma–points and weights {ξi, ωi}i=1,...,M by using
Gauss-Hermite quadrature rules [10].

2: for k = 1 to K do

3: Prediction (time update)
4: Propagate the sigma-points:

xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1, i = 1, ...,M.
x̃i,k|k−1 = f(xi,k−1|k−1), i = 1, ...,M.

5: Estimate the predicted state and corresponding covariance:
x̂k|k−1 =

∑M
i=1 ωix̃i,k|k−1.

Σk|k−1 =
∑M

i=1 ωix̃
2
i,k|k−1 − x̂2

k|k−1 + Q

6: Update (filtering estimate)
7: Propagate the sigma-points:

xi,k|k−1 = Sk|k−1ξi + x̂k|k−1, i = 1, ...,M.
ỹi,k|k−1 = h(xi,k|k−1), i = 1, ...,M.

8: Estimate the predicted measurement:
ŷk|k−1 =

∑M
i=1 ωiỹi,k|k−1.

9: Estimate noise variables φk using (20)⇒ φ̂k

10: Estimate the innovation covariance matrix:
Σy,k|k−1 =

∑M
i=1 ωiỹ

2
i,k|k−1 − ŷ2

k|k−1 + Rk(φ̂k)
11: Estimate the cross-covariance matrix:

Σxy,k|k−1 =
∑M

i=1 ωix̃i,k|k−1ỹ
>
i,k|k−1 −x̂k|k−1ŷ

>
k|k−1

12: Estimate the state and corresponding error covariance:
x̂k|k = x̂k|k−1 + Kk

(
ρk −mk(φ̂k)− ŷk|k−1

)
Σk|k = Σk|k−1 −KkΣy,k|k−1K

>
k

where the Kalman gain is Kk = Σxy,k|k−1Σ−1
y,k|k−1

.

13: end for

µ + λγk,i, s
2
k,i). Therefore, we would like to infer from a

single observation the values that γk,i and τk,i took. The ML
solution is the trivial solution where γ̂k,i = yk,i − h(xk) −
µ coincides with the innovation error of the filter and τk,i is
related to the innovation’s covariance.

However, following a Bayesian approach, we have de-
fined a priori distributions for the variables of interest which
can be used in the inference problem. Actually, they could be
of great help in this case where only a single observation is
available and the ML is likely to provide unreliable estimates.
All information regarding these unknowns is contained in

p(γk,i, τk,i|yk,i) ∝ p(yk,i|λγk,i, τk,i)p(γk,i|τk,i)p(τk,i)
(14)

where the likelihood is described by the Gaussian previously
mentioned. Particularly, we use a normalized likelihood

p(yk,i|γk,i, τk,i) = N
(
yk,i − h(xk)− µ

σ
; γ̃k,i, τ

−1
k,i

)
(15)

where ỹk,i , yk,i−h(xk)−µ
σ and γ̃k,i , λγk,i/σ. x̂k|k−1 is

used instead of xk, which is unknown. In this situation, it is
possible to obtain analytically a solution for the posterior dis-
tributions of γk,i and τk,i thanks to the conjugate nature of the
prior distributions [17]. The prior distributions were defined



in (12). For the sake of simplicity, we do not consider the
truncated Gaussian distribution in which case the derivations
are simplified [5]. Then,

p(γ̃k,i|τk,i) = N
(
γ̃k,i ; 0, λ

2τ−1k,i

)
(16)

p(τk,i) = G
(
τk,i ;

ν

2
,
ν

2

)
(17)

and it turns out that the posterior marginals of interest are

p(γ̃k,i|yk,i) = T2α
(
ỹk,i
2
,
β

2α

)
(18)

p(τk,i|yk,i) = G (α, β) (19)

with α = ν
2 + 1

2 and β = ν
2 +

ỹ2k,i

4 . Recall that we are
interested in point estimates, required to run the filter at time
k. From (18) and (19) we can compute the corresponding
modes and use them as our estimates

γ̂k,i =
|ỹk,i|
2

σ

λ
, τ̂k,i =

α− 1

β
(20)

where we took into account that γ̂k,i ∈ R+ by construction.

4. COMPUTER SIMULATIONS

The proposed filtering method was validated in a realistic sce-
nario composed of N = 6 anchor nodes, circularly deployed
in a 40×40 m2 area. The considered ranging technology was
UWB, and the parameters θ of the model adjusted as in [15],
where the authors adjusted the parameters to match real data.
Particularly, we considered µ = −0.1 m, σ = 0.3 m, λ = 0.6
m, and ν = 4. For stability reasons, a square-root formulation
of the QKF was used in the simulations [18].

Simulation results compare the root mean square error
(RMSE) performance of three kinds of QKF. Namely, i) a
QKF operating under the Gaussian assumption without ac-
counting for the heavy tails of the measurement noise. In this
case, the noise is assumed zero-mean, additive, white, and
normally distributed such that nk,i ∼ N (0, σ2) with σ = 0.3
m; ii) a clairvoyant QKF that knows exactly the realization
of the latent variables φk at each instant k and thus can use
mk(φk) and Rk(φk); and iii) the proposed QKF that esti-
mates φk and thus uses mk(φ̂k) and Rk(φ̂k) in the filtering
process. All these methods consider θ known.

From Fig. 1 we can see that although the clairvoyant
filter outperforms the rest, our solution tends to its perfor-
mance. On the other hand, the QKF operating under the fully
Gaussian assumption (alien to the tails) shows peaks due to
NLOS-induced outliers. Nevertheless, the differences are not
severe. Recall that the parameter regulating the heavy tails of
the noise distribution is ν. The larger this value, the more it
resembles a Gaussian distribution. With ν = 4 we are in such
situation and thus the similar performance. A second experi-
ment was conducted with ν = 2, in which case the effect of
NLOS is clear for the Gaussian filter, whereas our solution
hardly degrades with respect to the clairvoyant method.
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Fig. 1. RMSE of position for ν = 4.
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5. CONCLUSIONS

This paper presented a filter design framework/methodology
to robustly deal with NLOS situations in TOA-based local-
ization. In NLOS situations, range estimates are typically bi-
ased and have larger variances than LOS measurements. This
can be incorporated in the model as a heavy-tailed distribu-
tion, which can be formulated as a conditional Gaussian dis-
tribution and thus tracking can be efficiently implemented via
Gaussian filters. The article proposed as well an algorithm
to estimate in execution time the noise statistics. Simulation
results show improved performance and the promising capa-
bilities of such approach.
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