815 research outputs found

    Nonlinear Bayesian Estimation with Compactly Supported Wavelets

    Get PDF
    Bayesian estimation for nonlinear systems is still a challenging problem, as in general the type of the true probability density changes and the complexity increases over time. Hence, approximations of the occurring equations and/or of the underlying probability density functions are inevitable. In this paper, we propose an approximation of the conditional densities by wavelet expansions. This kind of representation allows a sparse set of characterizing coefficients, especially for smooth or piecewise smooth density functions. Besides its good approximation properties, fast algorithms operating on sparse vectors are applicable and thus, a good trade-off between approximation quality and run-time can be achieved. Moreover, due to its highly generic nature, it can be applied to a large class of nonlinear systems with a high modeling accuracy. In particular, the noise acting upon the system can be modeled by an arbitrary probability distribution and can influence the system in any way

    Poisson inverse problems

    Get PDF
    In this paper we focus on nonparametric estimators in inverse problems for Poisson processes involving the use of wavelet decompositions. Adopting an adaptive wavelet Galerkin discretization, we find that our method combines the well-known theoretical advantages of wavelet--vaguelette decompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, together with the remarkably simple closed-form expressions of Galerkin inversion methods. Adapting the results of Barron and Sheu [Ann. Statist. 19 (1991) 1347--1369] to the context of log-intensity functions approximated by wavelet series with the use of the Kullback--Leibler distance between two point processes, we also present an asymptotic analysis of convergence rates that justifies our approach. In order to shed some light on the theoretical results obtained and to examine the accuracy of our estimates in finite samples, we illustrate our method by the analysis of some simulated examples.Comment: Published at http://dx.doi.org/10.1214/009053606000000687 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stochastic expansions using continuous dictionaries: L\'{e}vy adaptive regression kernels

    Get PDF
    This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. L\'{e}vy random fields and their stochastic integrals are employed to induce prior distributions for the unknown functions or, equivalently, for the number of kernels and for the parameters governing their features. Scaling, shape, and other features of the generating functions are location-specific to allow quite different function properties in different parts of the space, as with wavelet bases and other methods employing overcomplete dictionaries. We provide conditions under which the stochastic expansions converge in specified Besov or Sobolev norms. Under a Gaussian error model, this may be viewed as a sparse regression problem, with regularization induced via the L\'{e}vy random field prior distribution. Posterior inference for the unknown functions is based on a reversible jump Markov chain Monte Carlo algorithm. We compare the L\'{e}vy Adaptive Regression Kernel (LARK) method to wavelet-based methods using some of the standard test functions, and illustrate its flexibility and adaptability in nonstationary applications.Comment: Published in at http://dx.doi.org/10.1214/11-AOS889 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Consistent nonparametric Bayesian inference for discretely observed scalar diffusions

    Get PDF
    We study Bayes procedures for the problem of nonparametric drift estimation for one-dimensional, ergodic diffusion models from discrete-time, low-frequency data. We give conditions for posterior consistency and verify these conditions for concrete priors, including priors based on wavelet expansions.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ385 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    The curvelet transform for image denoising

    Get PDF
    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a` trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement

    Wavelet Analysis and Denoising: New Tools for Economists

    Get PDF
    This paper surveys the techniques of wavelets analysis and the associated methods of denoising. The Discrete Wavelet Transform and its undecimated version, the Maximum Overlapping Discrete Wavelet Transform, are described. The methods of wavelets analysis can be used to show how the frequency content of the data varies with time. This allows us to pinpoint in time such events as major structural breaks. The sparse nature of the wavelets representation also facilitates the process of noise reduction by nonlinear wavelet shrinkage , which can be used to reveal the underlying trends in economic data. An application of these techniques to the UK real GDP (1873-2001) is described. The purpose of the analysis is to reveal the true structure of the data - including its local irregularities and abrupt changes - and the results are surprising.Wavelets, Denoising, Structural breaks, Trend estimation
    • 

    corecore