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Abstract— Bayesian estimation for nonlinear systems is still
a challenging problem, as in general the type of the true
probability density changes and the complexity increases over
time. Hence, approximations of the occurring equations and/or
of the underlying probability density functions are inevitable.
In this paper, we propose an approximation of the conditional
densities by wavelet expansions. This kind of representation
allows a sparse set of characterizing coefficients, especially
for smooth or piecewise smooth density functions. Besides its
good approximation properties, fast algorithms operating on
sparse vectors are applicable and thus, a good trade-off between
approximation quality and run-time can be achieved. Moreover,
due to its highly generic nature, it can be applied to a large
class of nonlinear systems with a high modeling accuracy. In
particular, the noise acting upon the system can be modeled
by an arbitrary probability distribution and can influence the
system in any way.

I. INTRODUCTION

In many applications, the state of the system is not
completely accessible and consequently has to be estimated.
Due to imperfect knowledge, unknown disturbances acting
upon the system, and imprecise measurements, it seems
reasonable to model the system state as a random variable
and to extrapolate it over time by means of a recursive
Bayesian estimator.

For linear systems with Gaussian random variables, the
well-known Kalman filter provides exact solutions in a com-
putationally feasible manner [1]. However, for non-Gaussian
noise or nonlinear systems, a Bayesian estimator is not appli-
cable in general, since the type of the true probability density
function changes and its complexity increases over time.
Hence, approximations of the occurring equations and/or
the underlying true densities are inevitable. For nonlinear
systems, well-established variants of the Kalman filter are the
Extended Kalman filter [2], the Unscented Kalman filter [3],
or other sample-based approaches like the Gaussian estimator
[4]. However, due to their Gaussian assumption about the
resulting density function, they typically cannot represent the
true complex density in an adequate way. In contrast, particle
filters, representing the occurring densities by a number of
random samples, can approximate arbitrary densities [5]. But
one of their main disadvantages is to determine the number
of particles for a sufficient representation of the density.

In this situation, wavelets offer a way out. Representing
densities with wavelets gives a deterministic approach in
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contrast to the random sampling of particle filters. They are
known to have excellent properties in the representation of
smooth or piecewise smooth functions, too.

Compared to other complex estimation techniques such as
Gaussian mixture filters [6], [7], they give a clear description
on how the decomposition of the respective densities should
be done. Unlike the Gaussian mixture filter, where each
component of the describing set of Gaussians influences each
point of the density, the number of influencing compactly
supported wavelets in a comparable setting is fixed and
known in advance.

Taking other orthogonal expansions into account, e.g., a
Fourier density approximation [8], [9], the wavelet coeffi-
cients do not only carry information about the influence of
certain frequencies, but also localize the behavior in space.

Furthermore, the specific hierarchical structure of the
wavelet decomposition can be utilized in other research
fields, as for example in stochastic nonlinear model predic-
tive control [10]. In particular, states in the remote future
could be rated less precisely than states in the near future.
Such an approach is very similar to how humans plan.

In this paper, we present an estimator for nonlinear, time-
invariant systems, whose complexity is constant over time.
Our approach is based on approximations of the conditional
densities that represent a probabilistic description of the
nonlinear system and measurement equations with wavelet
expansions. In doing so, the prediction and measurement step
of a wavelet-based Bayesian estimator can be calculated in
closed form. By using a wavelet decomposition, we benefit
from the preferable characteristics of wavelets mentioned
above. Moreover, we show that the corresponding operations
for such an estimator only consist of simple summations and
multiplications and are linear with respect to the significant
coefficients of the wavelet extensions. Besides the excellent
approximation capabilities of the wavelet transform, fast
algorithms, which operate on sparse vectors, can be applied
and an efficient trade-off between approximation quality and
run-time can be achieved.

The paper is structured as follows: In the next section,
we present the two main processing steps of a Bayesian
estimator. Afterwards, a brief review about the properties
of compactly supported wavelets is given and the basic idea
of multiscale analysis is presented. For all involved opera-
tions of a Bayesian estimator, the counterparts in wavelet
decomposition are derived in Section V. In Section VI, the
capabilities of the proposed approach are illustrated by means
of simulations. An outlook to future work concludes the
paper.
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II. PROBLEM FORMULATION

In this paper, we consider a time-invariant, discrete-time
system, described by a known stochastic system model

xk+1 = a(xk, uk,wk) (1)

and a known stochastic measurement model

y
k

= h(xk,vk) , (2)

where xk is the not completely accessible system state, uk

the system input, and y
k

the measurement. The random
variables wk and vk, characterized by their known under-
lying probability densities fw

k (wk) and fv
k (vk), subsume

the system and measurement noise and can be arbitrarily
distributed. Furthermore, ŷ

k
denotes a specific realization of

the measurement process. Throughout the paper, we assume,
that the system state xk is restricted to a bounded set.

Based on the equations (1) and (2), the inaccessible system
state xk can be estimated in an efficient recursive way
starting from a known initial prior density f e

0 by applying a
Bayesian estimator with its two processing steps.

The time update or prediction step extrapolates the result
of the previous filter step over one time step and can be
expressed in terms of probability density functions by the
Chapman-Kolmogorov equation

fp
k+1(xk+1) :=

∫
fT
k (xk+1|xk, uk) · f e

k (xk)dxk , (3)

where fT
k (xk+1|xk, uk) denotes the transition density and

can be derived from (1).
In the filtering step or measurement update, a measurement

ŷ
k

is incorporated into a prior density fp
k (xk) in order to

obtain an improved estimation f e
k (xk), i.e.,

f e
k (xk) =

fk(ŷ
k
|xk) · fp

k (xk)∫
fk(ŷ

k
|xk) · fp

k (xk) dxk

, (4)

where the conditional density fk(ŷ
k
|xk) denotes the likeli-

hood and can be derived from (2).
For nonlinear systems with arbitrarily distributed random

variables, both integrals in eq. (3) and (4) cannot be solved in
closed form. Thus, adequate approximations are inevitable.
Since a repeated approximation of fp

k (xk) in every pro-
cessing step is typically computationally intractable, we
approximate the conditional densities in eq. (3) and (4) by
their wavelet expansions instead. Due to the assumption
that the system state is restricted to a bounded set together
with the time-invariant system and measurement models, an
offline approximation is possible.

III. KEY IDEA

The key idea of this paper is to enable a closed-form
calculation of the prediction and measurement step by means
of wavelet expansions of the conditional densities. Compared
to similar approaches using axis-aligned Gaussian mixtures
as in [6] or [11], wavelets have some significant advan-
tages. Besides their good approximation quality, no complex
optimization problem has to be solved in order to obtain

the decomposition of a given density. Furthermore, wavelets
are localized in space, so that the number of influencing
wavelets of each point of the density is fixed and known in
advance. This fact is particularly interesting with respect to a
parallel processing of the density. Finally, efficient algorithms
operating on wavelet expansions combined with an adequate
representation of a wide class of functions results in a good
trade-off between run-time and approximation quality. In
order to take advantage of all these facts, all operations of
the estimator should be executed in the wavelet domain.

IV. INTRODUCTION IN WAVELETS

In this section, we would like to briefly introduce the
notion of orthogonal and biorthogonal compactly sup-
ported wavelets. For clarity reasons, we first consider a
one-dimensional state space. The expansion to the multi-
dimensional case is presented at the end of this section.
Please also refer to [12] for a deeper review.

A. Compactly Supported Wavelets
A wavelet basis of L2(IR) consists of dilated and trans-

lated versions of a function ψ(·),

ψj,n(x) =
1
√

2
j
ψ
(
2−jx− n

)
, with j, n ∈ ZZ . (5)

The wavelet function ψ(·) is strongly connected to the
so-called scaling function φ(·) and they satisfy the equations

φ(x) =
√

2
∑
n∈ZZ

hnφ(2x− n) and

ψ(x) =
√

2
∑
n∈ZZ

gnφ(2x− n) .
(6)

The sequences h = {hn}n∈ZZ and g = {gn}n∈ZZ are called
filters as they are used for the fast wavelet transform [13].
It can be shown that there are only finitely many non-zero
sequence elements if and only if the corresponding wavelet
has compact support [13].

For the rest of the paper, we use the notation φj,n analog
to the definition of ψj,n introduced in (5).

In order to understand the following, it is also necessary to
know that the scaling function is normalized and the wavelet
function has M vanishing moments, such that∫

φ(x) dx = 1 and∫
xmψ(x) dx = 0 ,m = 0, . . . ,M − 1 .

(7)

To reconstruct a function f ∈ L2(IR) from its inner
products with this basis, a reconstruction basis consisting of
ψ̃j,n and φ̃j,n and with it the filters h̃n and g̃n are needed. In
the case of biorthogonal wavelets, the basis functions fulfill
the equations

〈ψj,n, ψ̃j′,n′〉 = δ[n− n′]δ[j − j′] ,

and therefore, the reconstruction can be described as

f =
∞∑

n,j=−∞
〈f, ψj,n〉ψ̃j,n =

∞∑
n,j=−∞

〈f, ψ̃j,n〉ψj,n



with the usual inner product of L2(IR)

〈f, ψ〉 =
∫
f(x)ψ∗(x) dx .

ψ∗ constitutes the conjugate complex of ψ, but since we are
using real-valued wavelets, we drop the conjugate complex
for the rest of the paper.

The two possible ways of expressing a function f relative
to either of the basis show that this approach is completely
symmetric and it does not matter, which filter is used for
transformation, and which is used for reconstruction.

In the special case of an orthonormal wavelet basis, the
reconstruction basis coincides with the transformation basis,
as the basis constitutes a tight frame.

B. Multiscale Analysis

With

Vj = span{φj,n : n ∈ ZZ} and Wj = span{ψj,n : n ∈ ZZ}

the wavelet basis induces separate nested subspace of L2(IR)
– a multiresolution analysis on L2(IR)

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . .

with
Vj−1 = Vj ⊕Wj and

∞⋂
j=−∞

Vj = {0}, closure

 ∞⋃
j=−∞

Vj

 = L2(IR) .

A simple way to think about this multiresolution ap-
proach is to build up the function from an approximation
(low frequency components) and its details (high frequency
components) on top of it.

Since we are only able to use a finite amount of mem-
ory, we have to restrict ourselves to a certain granularity
and express the function f with the basis of V0 with
respect to a base space Vj′ . Such a basis is {φj′,n}n∈ZZ ∪
{ψj,n}j∈{1,...,j′},n∈ZZ. A restriction of the allowed shifts
of the wavelet and scaling functions is accomplished by
our assumption to only work with densities with compact
support.

Therefore, we are able to express f ∈ V0 with

f(x) =
∑
n∈ZZ

〈f, φ̃j′,n〉φj′,n(x) +
j′∑

j=1

∑
n∈ZZ

〈f, ψ̃j,n〉ψj,n(x) .

Please refer to [14] for more information on how to actu-
ally calculate the wavelet coefficients with the fast wavelet
transform.

C. Multi-dimensional Case

In order to expand this approach to the multi-dimensional
case, we use the separable wavelet basis (to notation the
expression, assume ψj′+1,k(x) := φj′,k(x)) for a N -
dimensional space

⊗N
d=1 V0

{ψj1,n1(x0) · · ·ψjN ,nN
(xN )|

d ∈ {1, . . . , N}, jd ∈ {1, . . . , j′ + 1}, nd ∈ ZZ} .
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Fig. 1: Bayesian wavelet estimator. All densities that are
marked with a tilde are to be understood in wavelet expan-
sion.

Please note that we can choose the wavelet family for each
dimension of the density separately. This also includes the
symmetric pair of a biorthogonal wavelet basis.

The reason why we use this special multi-dimensional
basis in contrast to the more common basis that ends up
with the same scale parameters in every dimension is rooted
in the prediction operation that will be introduced shortly.

Other more specialized methods exist to build multi-
dimensional basis but they are beyond the scope of this
paper.

V. BAYESIAN ESTIMATION WITH WAVELETS

As described in Section II, two different abstract opera-
tions have to be specified with all involved functions repre-
sented in wavelet domain. From now on, we assume that all
functions are available in wavelet expansion, calculated via
the fast wavelet transform. On the one hand, the prediction
step has to implement a marginalization of a product of
a transition density with a density function. Our approach
solves this in a fast and exact way. On the other hand,
the measurement update has to calculate a product of two
densities and normalize the result. We show how an adequate
approximation for the multiplication can be found. In Fig. 1,
the modules of the wavelet-based Bayesian estimator are
depicted.

For the proposed technique, both the use of compactly sup-
ported orthonormal wavelet basis and of compactly supported
biorthogonal wavelet basis is possible.

A. Prediction Step

We make some simplifying assumption in this paragraph
to increase the readability of the proofs and theorems. First,
we assume that the system state can be expressed by a scalar.
Since we are working with separable basis, the discussion
can be extended easily to the multi-dimensional case using
the multi-dimensional basis presented in the previous chapter.
Second, the control input is implicitly given by the transition
density. A different input at time step k can be simulated
by exchanging the system transition density at time step k.



Third, to simplify the notation of the wavelet expansion of
transition densities and likelihoods, we subsume both the
scale and shift parameters in one single parameter. The set
Λ is used to denote all valid combinations.

Theorem 1 Let the current density and the transition density
of eq. (3) be given by

f e
k (xk) =

∑
i∈Λ

c
(e)
i ψ̃i(xk) and

fT
k (xk+1|xk) =

∑
i,i′∈Λ

c
(T )
i,i′ ψ̃i(xk+1)ψi′(xk) , where

c
(e)
i = 〈f e

k , ψi〉 and

c
(T )
i,i′ =

∫ ∫
fT
k (xk+1|xk)ψi′(xk+1)ψ̃i(xk) dxk+1 dxk .

Then, the predicted density can be expressed by

fp
k+1(xk+1) =

∑
i∈Λ

c
(p)
i ψ̃i(xk+1) , where

c
(p)
i =

∑
i′∈Λ

c
(T )
i,i′ c

(e)
i′ .

Proof: Starting with

fp
k+1(xk+1) =

∫
fT
k (xk+1|xk)f e

k (xk) dxk

=
∫
fT
k (xk+1|xk)

∑
i∈Λ

c
(e)
i ψ̃i(xk) dxk

=
∑
i∈Λ

c
(e)
i

∫
fT
k (xk+1|xk)ψ̃i(xk) dxk

and taking the inner product with the basis element ψi′ on
both sides, we get

〈fp
k+1, ψi′〉

=
∑
i∈Λ

c
(e)
i

∫ ∫
fT
k (xk+1|xk)ψi′(xk+1)ψ̃i(xk) dxk+1 dxk

=
∑
i∈Λ

c
(e)
i c

(T )
i,i′ .

Wavelet-based Bayesian prediction is O(|fT
k |) when |fT

k |
is defined as the number of non-zero coefficients of the
transition density1. This can be achieved if the lookup of
coefficients is O(1) and the operation is iterating over all
non-zero coefficients of the transition density.

B. Filter Step

In contrast to the prediction step, there are two necessary
operations for the measurement update in eq. (4). The next
few paragraphs cover the multiplication. At the end of this
section, there is a discussion how normalization is achieved.

Multiplication of two functions given in their wavelet
expansions is a tricky operation (see [15] for a more detailed
review), since it is not a linear operation and the product of
two elements of a basis is not necessarily an element of that

1| · | is not a valid norm as it violates a ∈ IR : |a · f | = |a| · |f | .

basis again. Therefore, we have to find a way to express the
result of the operation relative to the original basis functions.

To simplify the notation for the next theorem, we introduce
two projections Pj : L2(IR)→ Vj and Qj : L2(IR)→Wj .

Theorem 2 Given two densities f, g ∈ V0 and their mul-
tiresolution expansions (g is split up in the same way) with
respect to a base space Vj′

f = Pj′(f) +
j′∑

j=1

Qj(f) .

Then, the product can be written as

f · g = Pj′(f)Pj′(g)

+
j′∑

j=1

(Pj(f)Qj(g) +Qj(f)Pj(g) +Qj(f)Qj(g)) .

Proof: Please see [15] for a variant of this proof.
So, the problem of finding the result of the multiplication

of two functions boils down to finding the product of basis
functions in the same scale.

The missing piece for expressing the product of two basis
functions with respect to the basis is given by the connection
coefficients ∫

φ0,0(x)φ0,m(x)φ0,n(x) dx ,

which are fixed for a certain wavelet family. A description,
of how to calculate these values, can be found in [14].

From Theorem 2, we know that we only have to consider
basis functions on the same scale. This fact drastically
reduces the amount of connection coefficients that have to
be calculated and enables the reuse of intermediate results.

Working with compactly supported wavelets renders most
of the shift combinations to zero. Furthermore, the estimate∫

ψ0,0(x)ψj,m(x)ψj,n(x) dx

= 2−j

∫
ψ(x)ψ(2−jx−m)ψ(2−jx− n) dx

≤ 2−jc

leads to the fact that the error of not calculating the “spill-
over” effect into finer scales can be seen as negligible after
a certain upscaling. The decision, of how many finer scales
are taken into account, allows to set the accuracy of the
multiplication operation.

Also note that after the multiplication is finished a partial
run of the fast wavelet transformation is necessary to rebuild
a proper density in a wavelet expansion.

Considering multi-dimensional state spaces, the number of
the multi-dimensional connection coefficients unfortunately
is exploding due to the Cartesian product, which is neces-
sary to get all combinations. Additionally, all combinations
between the different multi-dimensional projections on the
same scale need to be calculated.

The time complexity of the multiplication is
O(max(|f |, |g|) · s2) for the worst case, where again



|f | constitutes the number of non-zero coefficients of the
density f and s represents the finest scale. To explain this,
we have to split up operations needed for the multiplication
of two densities into the amount of operations needed for
the multiplication of the different scales and those needed to
transform the density back into a valid wavelet expansion.

During the multiplication operation, the product between
Qj(f)Pj(g) and vice versa on each scale is the heavy weight
due to the reconstruction of every single needed approxima-
tion coefficient. Certainly, only those coefficients of Pj(g)
have to be restored where the corresponding coefficient of
Qj(f) is non-zero.

This leads to the question of the cost of the reconstruction
of one single approximation coefficient on a high scale, or the
question of how many other coefficients have to be touched
and calculated. If l is the length of the filter corresponding
to the used wavelet, then every approximation coefficient is
backed up by l

2 approximation and detail coefficients on the
next finer scale. Continuing this recursive argument leads to
l
2

∑s
i=1 i touched and calculated values, which is O( l

2s
2).

To estimate the worst-case behavior for the transformation
of the resulting density into a valid wavelet expansion, we
need to know on which scales how many of the newly created
approximation coefficients lie. Since the multiplication on
each scale yields O(max(|f |, |g|)) coefficients in total, it is
permitted to assume them all on the finest scale, which corre-
sponds to the worst-case. Now O(max(|f |, |g|)) operations
are needed to rebuild the density.

As a result, the multiplication is linear in time with respect
to the significant coefficients of the densities.

The next theorem covers the problem of normalization
of a density. Since wavelet functions and scaling function
are behaving differently when the integral is calculated, we
distinguish between them in the next paragraphs.

Theorem 3 Given a density in its wavelet expansion

f =
∑
n∈ZZ

〈f, φ̃j′,n〉φj′,n +
j′∑

j=1

∑
n∈ZZ

〈f, ψ̃j,n〉ψj,n .

Then g := f/c satisfies
∫
g(x) dx = 1 with

c =
√

2
j′ ∑

n∈ZZ

〈f, φ̃j′,n〉 .

Proof: Straightforward calculation leads to∫
f(x) dx

=
∫ ∑

n∈ZZ

〈f, φ̃j′,n〉φj′,n(x) +
j′∑

j=0

∑
n∈ZZ

〈f, ψ̃j,n〉ψj,n(x) dx

=
√

2
j′ ∑

n∈ZZ

〈f, φ̃j′,n〉 .

The last step is supported by (7) and the linearity of
integration.

The worst-case time complexity of the normalization
process belongs to the set O(|f |). Please note that the
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Fig. 3: Root mean square error (rmse) of the proposed
estimator ( ) measured against a particle filter ( ) and the
true Bayesian estimator ( ).

complexity of describing the densities increases with every
multiplication, but it is implicitly reduced in every prediction
step.

There are more ways to reduce the complexity of the
densities like thresholding and cutting off higher scales, but
they are beyond the scope of this paper.

VI. SIMULATION RESULTS

For realization of (1), we employ the specific system
model

xk+1 = sin(xk) + xk + wk ,

where the random variable wk follows a normal distributions
with expected value µw

k = 0 and standard deviation σw
k =

0.8.
As measurement equation, we use

yk = x3
k + vk ,

where vk is normally distributed with parameters µv
k = 0 and

σv
k = 0.3. The initial state of the estimator is also described

by a normal distribution with mean µx
0 = 1.5 and standard

deviation σx
0 = 1.2. Please note that the wavelet-based es-

timator can handle much more complex simulation settings,
such as an arbitrarily distributed multiplicative noise.

We conducted 60 Monte Carlo simulation runs and each
run consisted of 20 alternating prediction and measurement
update steps. Throughout the simulations, we use Daubechies
wavelets with two vanishing moments to approximate the
system and state densities and consider three additional finer
scales for the multiplication to cover the spill-over effect.

In Fig. 2, two exemplary results of these operations are
shown. The wavelet-based Bayesian estimator is able to
follow the densities with a very good quality. Not only does
it express the same expected value, but also higher moments
are retained in a precise manner. Even high frequency
singularities, like the falling edge of the estimated density
in Fig. 2b, are reproduced without any ringing, although the
calculation of the spill-over effect was stopped after the 3th
scale.

To additionally emphasize the success of our method, we
compare it to a true Bayesian estimator and a common non-
linear filter: the particle filter [5]. We use two instances of
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Fig. 2: Exemplary plot of a prediction and a measurement update step of the wavelet-based Bayesian estimator in comparison
to the true density.

bayesian pf 200 pf 1000 wavelet
rmse 0.024556 0.118244 0.042934 0.024558

TABLE I: Average root mean square error (rmse) over 60
runs.

the particle filter, the first with 200 and the second with
1000 particles. Figure 3 depicts the root mean square error
(rmse) for the estimated expected values of the true Bayesian
estimator, the wavelet-based Bayesian estimator as well as
the larger particle filter instance. The smaller particle filter
instance is left out to retain readability of the figure. In
Table I, the average root mean square errors over the runs
are shown.

A comparison of the number of significant coefficients of
the wavelet basis that are determined by a hard thresholding
of 0.00001 (average of 129 coefficients) with the constant
number of particles for each test run shows that the proposed
estimator uses less coefficients and yet, outrules both of the
other particle filters in most of all cases (small: 52 of 60,
large: 43 of 60).

VII. CONCLUSIONS AND FUTURE WORK

We presented a nonlinear estimator operating on wavelet
expansions with constant complexity over time. For the two
alternating processing steps of a Bayesian estimator, the
counterparts in the wavelet domain were derived, whose
time complexities are linear with respect to the non-zero
coefficients. In particular, the prediction step can be calcu-
lated in an exact way, whereas for the filtering step, a fast
and adequate approximation is employed. Together with the
approximation qualitiy of wavelets, a good performance is
achieved.

To further compress the representation of densities, future
work will take other kinds of wavelets into consideration.
Extensions like curvelets or contourlets seem to be promising
[16]. More enhancements concerning the run-time could also
be achieved by thresholding the coefficients or neglecting
finer scales. Additionally, the presented estimator will be
integrated in a nonlinear model predictive control framework.
In particular, if the value function is represented by its
wavelet expansion, an effective and adaptive evaluation of
the Bellman equation can be achieved.
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