1,521 research outputs found

    Keep Rollin' - Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots

    Full text link
    We show dynamic locomotion strategies for wheeled quadrupedal robots, which combine the advantages of both walking and driving. The developed optimization framework tightly integrates the additional degrees of freedom introduced by the wheels. Our approach relies on a zero-moment point based motion optimization which continuously updates reference trajectories. The reference motions are tracked by a hierarchical whole-body controller which computes optimal generalized accelerations and contact forces by solving a sequence of prioritized tasks including the nonholonomic rolling constraints. Our approach has been tested on ANYmal, a quadrupedal robot that is fully torque-controlled including the non-steerable wheels attached to its legs. We conducted experiments on flat and inclined terrains as well as over steps, whereby we show that integrating the wheels into the motion control and planning framework results in intuitive motion trajectories, which enable more robust and dynamic locomotion compared to other wheeled-legged robots. Moreover, with a speed of 4 m/s and a reduction of the cost of transport by 83 % we prove the superiority of wheeled-legged robots compared to their legged counterparts.Comment: IEEE Robotics and Automation Letter

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments

    Get PDF
    Trabajo presentado al IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), celebrado en Chicago, Illinois (US) del 14 al 18 de septiembre.This paper presents a novel approach for robot navigation in crowded urban environments where people and objects are moving simultaneously while a robot is navigating. Avoiding moving obstacles at their corresponding precise moment motivates the use of a robotic planner satisfying both dynamic and nonholonomic constraints, also referred as kynodynamic constraints. We present a proactive navigation approach with respect its environment, in the sense that the robot calculates the reaction produced by its actions and provides the minimum impact on nearby pedestrians. As a consequence, the proposed planner integrates seamlessly planning and prediction and calculates a complete motion prediction of the scene for each robot propagation. Making use of the Extended Social Force Model (ESFM) allows an enormous simplification for both the prediction model and the planning system under differential constraints. Simulations and real experiments have been carried out to demonstrate the success of the proactive kinodynamic planner.Work supported by the Spanish Ministry of Science and Innovation under project Rob Task Coop (DPI2010-17112).Peer Reviewe

    Learning visual docking for non-holonomic autonomous vehicles

    Get PDF
    This paper presents a new method of learning visual docking skills for non-holonomic vehicles by direct interaction with the environment. The method is based on a reinforcement algorithm, which speeds up Q-learning by applying memorybased sweeping and enforcing the “adjoining property”, a filtering mechanism to only allow transitions between states that satisfy a fixed distance. The method overcomes some limitations of reinforcement learning techniques when they are employed in applications with continuous non-linear systems, such as car-like vehicles. In particular, a good approximation to the optimal behaviour is obtained by a small look-up table. The algorithm is tested within an image-based visual servoing framework on a docking task. The training time was less than 1 hour on the real vehicle. In experiments, we show the satisfactory performance of the algorithm

    Timed Automata Approach for Motion Planning Using Metric Interval Temporal Logic

    Full text link
    In this paper, we consider the robot motion (or task) planning problem under some given time bounded high level specifications. We use metric interval temporal logic (MITL), a member of the temporal logic family, to represent the task specification and then we provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find a feasible motion (or path) sequence for the robot to complete the task.Comment: Full Version for ECC 201

    An Unsupervised Neural Network for Real-Time Low-Level Control of a Mobile Robot: Noise Resistance, Stability, and Hardware Implementation

    Full text link
    We have recently introduced a neural network mobile robot controller (NETMORC). The controller is based on earlier neural network models of biological sensory-motor control. We have shown that NETMORC is able to guide a differential drive mobile robot to an arbitrary stationary or moving target while compensating for noise and other forms of disturbance, such as wheel slippage or changes in the robot's plant. Furthermore, NETMORC is able to adapt in response to long-term changes in the robot's plant, such as a change in the radius of the wheels. In this article we first review the NETMORC architecture, and then we prove that NETMORC is asymptotically stable. After presenting a series of simulations results showing robustness to disturbances, we compare NETMORC performance on a trajectory-following task with the performance of an alternative controller. Finally, we describe preliminary results on the hardware implementation of NETMORC with the mobile robot ROBUTER.Sloan Fellowship (BR-3122), Air Force Office of Scientific Research (F49620-92-J-0499

    Information-Theoretic Motion Planning for Constrained Sensor Networks

    Get PDF
    This paper considers the problem of online informative motion planning for a network of heterogeneous sensing agents, each subject to dynamic constraints, environmental constraints, and sensor limitations. Prior work has not yielded algorithms that are amenable to such general constraint characterizations. In this paper, we propose the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm as a solution to the constrained informative motion planning problem that embeds metrics on uncertainty reduction at both the tree growth and path selection levels. IRRT possesses a number of beneficial properties, chief among them being the ability to find dynamically feasible, informative paths on short timescales, even subject to the aforementioned constraints. The utility of IRRT in efficiently localizing stationary targets is demonstrated in a progression of simulation results with both single-agent and multiagent networks. These results show that IRRT can be used in real-time to generate and execute information-rich paths in tightly constrained environments.AFOSR and USAF under grant (FA9550-08-1-0086
    corecore