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Abstract— This paper presents a novel approach for robot
navigation in crowded urban environments where people and
objects are moving simultaneously while a robot is navigat-
ing. Avoiding moving obstacles at their corresponding precise
moment motivates the use of a robotic planner satisfying
both dynamic and nonholonomic constraints, also referred as
kynodynamic constraints. We present a proactive navigation ap-
proach with respect its environment, in the sense that the robot
calculates the reaction produced by its actions and provides the
minimum impact on nearby pedestrians. As a consequence, the
proposed planner integrates seamlessly planning and prediction
and calculates a complete motion prediction of the scene for
each robot propagation. Making use of the Extended Social
Force Model (ESFM) allows an enormous simplification for
both the prediction model and the planning system under
differential constraints. Simulations and real experiments have
been carried out to demonstrate the success of the proactive
kinodynamic planner.

I. I NTRODUCTION

The impact produced by the deployment of service robots
is of vital importance for the acceptance of robots in crowded
urban environments, specifically among humans in its natural
habitat.

In the present work, we propose a planner that predicts
human motion and minimizes its impact on all those nearby
pedestrians. Time restrictions are significant in social en-
vironments: people walk and change their positions during
time. A cost-based navigation path is calculated while sat-
isfying both dynamic and nonholonomic constraints, also
referred as kinodynamic constraints.

Prediction methods are of great importance. Most ap-
proaches separate planning and prediction and although a
joint approach may seem to boost the problem complexity,
we will present a simple method to jointly account predic-
tions and planning by considering a union state of people
and robots.

Human motion prediction can be achieved through learn-
ing techniques, like in the works of [1], [2] and [3], where
they make use of maximum entropy learning methods using
a linear combination of different kinds of features.

In this work, we apply geometrical based predictors such
as the works of [4] and [5] that infer human motion intentions
and afterwards predict human motion in a continuous space,
according to the Social Force Model (SFM) [6], and the
Extended SFM [7]. Works such as [8] and [9] already
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Fig. 1. Simulation environment in aspace × time, where people are
plotted as green cylinders and their predictions are drawn in the z axis,
which corresponds to time. The tree of paths calculated by therobot appears
in blue and the best path is a red line.

proposed to model people as a summation of a Potential
Field (PF), so it is not a novel idea.

In addition, PF navigation algorithms [10] have been
extensively studied in the literature. Despite their advantages,
there exist many well known limitations, such as local min-
ima or oscillations. Several approaches try to overcome these
limitations, such as [11], by using a randomized walking path
when a local minimum is reached.

The dynamic window approach [12] and other velocity
constrained approaches [13] permitted to consider obstacles
and collisions. Unfortunately, they suffer from local minima
as well. Approaches combining a DWA with a global planner
like [14] solve the problem by introducing a global function.
Our approach also relies on a global planner.

In [15] they obtain a kinodynamic compliant trajectory by
decoupling the problem into a search in space and a posterior
optimization of the path satisfying the restrictions. Our
approach integrates the search of a path avoiding obstaclesas
well as provides the inputs required to execute that trajectory
considering kinodynamic constraints.

During the last decade sampling based techniques have
become quite popular. Furthermore, sampling based methods
may take into account kinematic and dynamic constraints
such as [16] and [17].

[18] proposes a social awarereactive planning in human
environments. A joint calculation of people’s path and a robot
path is done in [19] using Gaussian processes, and [9] uses a
PF and minimizes its cost through people’s Potential Fields.
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Fig. 2. Overview of the proposed planning scheme.

II. PLANNING OVERVIEW

On the one hand, people typically move on the scene
changing their positions during some time, and therefore, we
must consider time-variant scenarios. On the other hand, a
robot trajectory must satisfy those strong time restrictions
while considering kinodynamic constraints. A state-space
formulation is explained in Sec. III.

The Extended Social Force Model is explained in Sec. IV
and how we calculate the forces affecting people and robots.
The use of the ESFM will simplify enormously the planning
under differential constraints since there is no need to solve
the boundary value problem (BVP) to link poses.

In Sec. V we propose to integrate the prediction algorithm
with the planning algorithm and solve the problem in a
holistic way. The prediction is carried out seamlessly and
simultaneously while the planning is being calculated, as
explained in Sec. V-E. Every new robot propagation entails
an estimation of the motion prediction of nearby people. As
a result, our planner presentsproactive characteristics since
we tend to initiate a change rather than a reaction to events.

An important assumption is done: a global planner pro-
vides a valid path to the goal unobstructed by static obstacles.
A general planning scheme can be seen in Fig. 2.

Our algorithm calculates for each iteration a path to
a goal avoiding moving obstacles like pedestrians on the
scene. The first output action in{u(tini), . . . , u(thorizon)} is
executed, and in the next iteration, a new plan is calculated,
and a new action is executed. This approach permits a
fast adaptation to changing environments, especially if the
prediction estimation changes drastically. As we will see in
Sec. VI and VII, our algorithm is implemented in real time
to provide an adaptable local planning.

The computed plan takes into account the reaction pro-
duced by its actions and produces the minimum disturbances
to other nearby pedestrians.

III. STATE-SPACE FORMULATION

For planning purposes in the present work, we consider
that both robots and people move in a two-dimensional space
which represents the urban environment. LetX denote the
workspace andx ∈ X describes the positionx = [x, y]⊤ in
a two dimensional space, as for moving objects (including
people) and as robots. The configuration spaceCz is defined
as a configurationqz ∈ Cz, where z denotes different
configuration spaces for people and robots.

Since we take into account a kinodynamic treatment of
the planning scheme, we define the phase spaceSz that only
considers the first order derivative, wheres′z ∈ Sz is defined
by s′z = [qz, q̇z]

⊤. In addition, we deal with strong time
constraints, where object movements alter the outcome of the
planning calculations, and we should consider the augmented
phase spaceST z = Sz × time, where time ∈ R+, and
sz ∈ ST z is a statesz = [qz, q̇z, t]

⊤ at timet. In general, we
will address the planning problem using the statesz ∈ ST z.

Finally, an actionuz ∈ Uz modifies the statessz, as it will
be discussed below.

A. People in the state-space

People are treated as free moving particles, and therefore,
no orientation is required. Accordingly, the configuration
space is equal to the workspaceCP = X and the person’s
phase spaceST P is described assp ∈ ST P , wheresp =
[x, y, vx, vy, t]

⊤.
The input spaceUP for the person’s action isup ∈ UP

which are linear accelerationsup = [ax, ay]
⊤. The kinody-

namic model describing the person’s motion is constrained
by the following differential equations:

ṡp = dc(sp, up) =
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. (1)

It will be discussed later how the input variablesup are
calculated.

B. Robot in the state-space

We consider the robot model to be characterized by a
unicycle robot model. Thereby, there appear nonholonomic
constraints in the robotic dynamic model due to the rolling
contacts between the rigid bodies. The phase state of the
robot ST R is described assr ∈ ST R, where sr =
[x, y, θ, v, ω, t]⊤. The robot action space is defined asur ∈
UR where ur = [av, aω]

⊤ are the translation acceleration
and the rotation acceleration. Then, the resultant differential
constraints are:

ṡr = dc(sr, ur) =
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C. Joint state-space

The joint state spaceST consists ofST = ST R ×
⋃

ST Pi
, which considers the robot phase spaceST R and the

union of every person’s phase spaceST P . Correspondingly,
the joint states ∈ ST is defined ass = [sr, sp1

, . . . , spN
]⊤.

Note that the variable timet = t(s) is equal to all the
states thats consists of. We will refer to the robot state
sr(s) ∈ ST R and the personith statespi

(s) ∈ ST P .

IV. EXTENDED SOCIAL FORCEMODEL

We employ the Extended Social Force Model (ESFM)
[7], based on [6], for navigation purposes since it provides
a realistic model describing interactions among humans in
typical social environments [5]. The ESFM considers humans
and robots as free particles in a 2D space abiding the laws
of Newtonian mechanics. The ESFM uses attractors and
repulsors in the continuous space.

The attraction forces assume that the pedestriann tries to
adapt his or her velocity within arelaxation time k−1,

fgoaln (qgoaln ) = k
(

v0n(q
goal
n )− vn

)

, (3)

where v0n(q
goal
n ) is the desired velocity vector to reachqgoaln ,

and vn is the current velocity.
The repulsive interaction forces are defined as follows:

f int
n,z = aze

(dz−dn,z)/bz d̂n,z, (4)

wherez ∈ Z , beingZ = P ∪ O ∪ R is either a person, or
a static object of the environment, or a robot. For each kind
of interaction force corresponds a set of force parameters
{k, az, bz, λz, dz}. The distancedn,z from the personn to
the targetz and d̂n,z is the unity vectorz → n. For further
details, see [7], [5].

Accordingly, the resultant force is calculated as the sum-
mation:

fn = fgoaln (qgoaln )+
∑

j∈P\n

f int
n,j +

∑

o∈O

f int
n,o +

∑

r∈R

f int
n,r , (5)

where each target on the scene, either a person, or an
obstacle, or a robot, contributes tofn.

A. SFM applied to the robot

The objective is to treat a robot as a free moving particle
in the space, similarly to people as explained above. Unfortu-
nately, nonholonomic constraints reduce the robotic platform
mobility, although it has full reachability inCR. We need
to bridge the gap and provide an adjustment that permits
the robot being compatible with the ESFM. The resultant
robot force fr = fr||θ + fr⊥θ consists of a component in
the translation directionfr||θ, which directly transforms into
a translational acceleration and an orthogonal forcefr⊥θ

that does not contribute to the robot translation. The robot
rotation acceleration is computed in the following way:

τr = r× fr⊥θ + kτω, (6)

wherer is the vector radii of our platform, oriented toθ and
kτ is a damping factor in order to avoid oscillations.

Algorithm 1 Proactive planning(qgoalr , sini, thorizon,K)

1: Initialize T (V, E)← {ø}
2: V ← sini
3: sparent = sini
4: {qgoalpi

} = intentionalitypeopleprediction()
5: for j = 1 to K do
6: if t(sparent) > thorizon then
7: qgr = sample(CR, qgoalr )
8: sparent = nearestvertex(qgr , T )
9: end if

10: ur = calculateedge(sparent, qgr )
11: snew = propagatevertex(ur, sparent)
12: Jnew = calculatecost(snew, ur, q

goal
r )

13: V ← V ∪ {[snew, Jnew]}
14: E ← E ∪ {ur}
15: end for
16: return minimum costbranch(T )

V. PROACTIVE KINODYNAMIC PLANNING

All the main features of our proposed planner have been
discussed in Sec. II, and can be summarized as:

• A kinodynamic solution is calculated.
• Proactive planning in which planning uses prediction

information, and prediction is dependent on the plath
calculated.

• Prior requirement: a global planner provides a valid
global path.

• At each iteration, the planner provides a locally valid
path.

• The path computed minimizes the perturbations on the
scene, according to a cost function.

Additionally, the proactive planner is fast enough for a real
time implementation, as demonstrated in Sec. VII.

Algorithm 1 has four inputs: the goalqgoalr , the initial
state sini, the horizon timethorizon, and the number of
verticesK. The qgoalr provides the position and orientation
of the final robot configuration. The initial statesini ∈ ST
contains the information of the robot state plus all people’s
states considered on the scene. The horizon timethorizon
specifies the temporal window used to forecast the plan and
the predictions.

The algorithm builds a treeT (V, E) and returns the
minimum cost branch. The edgesE are the robot control
inputsur ∈ UR, and the verticesV consist of the joint state
s ∈ ST and the accumulated costJ ∈ R to reach that vertex.

With all those requirements in mind, we propose Alg. 1
which is inspired in a randomized kinodynamic planner [16],
except for some particularities that will be discussed below.

A. Horizon time and depth exploration

The horizon time parameter sets the amount of time that
the planner forecasts in order to obtain a path similar to a
model predictive control (MPC). Although the set of inputs
{ur(tini), . . . , ur(thorizon)} is calculated, only the first input
command is executed and a new set of inputs is calculated



in the next iteration. The horizon time bounds the region of
explorationCR to a circle radii equal tothorizon · vmax as
depicted in Fig. 3.

Usually qgoalr /∈ CR due to the horizon time limit, and
accordingly, our approach obeys a depth search strategy to
develop branches of the treeT until the horizon time is
reached (Line 6 in Alg. 1).

B. Space exploration

The space exploration is done inCR where a set of random
goalsqgr are randomly calculated in order to extend the tree
T . These random goalsqgr are attractors that generate valid
robotic paths inST until thorizon is reached, as explained
below. Since there is a strong time restriction,qgr are sampled
in the boundary ofCR, to avoid bias and to ensure that the
paths generated indeed expandT .

The random goalsqgr can be seen in Fig. 3. The sampling
is done using a Gaussian distribution centered at the nearest
q ∈ CR to qgoalr and the variance values depend on the density
of nearby people: when the density grows, the variance also
augments.

C. Find nearest vertex

Once a new random goalqgr is generated, the planner finds
the nearest vertexV in T to be the parent vertex for the new
branch to be calculated. If only pure distances are calculated
in CR, there would exist a strong bias to select “old” vertices
that are nearthorizon. The calculation of the new weighted
distance is done as follows:

d(sr, q
g
r ) = ||xr−xgr ||+cθ||θr−θ

g
r ||+ctime||tr−tini||. (7)

D. Edge calculation

EdgesE are robot control inputsur ∈ UR. Despite that
the joint state takes into account all people, we can only
select the input actions for the robot platform. We calculate
the resultant robot forcefr by making use of the ESFM (5).
This force is transformed into an acceleration using (6), and
thus, a robot actionur = fr/mr that takes into account the
mass of the robotmr.

The goal of the robot is the random goalqgr and at the same
time reacts to the environment obstacles, that is, it takes into

Fig. 3. Random goalsqgr distribution, on theright there are no people
in CR and search is concentrated on the goal direction. On theleft the
density of nearby people on the scene is higher, and thus, theq

g
r sampling

distribution is widespread.

Fig. 4. TreeT of paths in the spaceX × time. On theleft, the z axis
represents time. On theright projection ofT in X .

Algorithm 2 Vertex propagation(ur, sparent)

1: snewr = sr(sparent) + dc
(

sr(sparent), ur

)

·∆t
2: for i = 1, . . . , N do
3: if spi

(sparent) * qgoalpi
then

4: upi
= f

(

qgoalpi
, sparent, s

new
r

)

/mi

5: snewpi
= spi

(sparent) + dc
(

spi
(sparent), upi

)

·∆t
6: end if
7: end for
8: return snew = [snewr , snewp1

, . . . , snewpN
]⊤

account the states of the nearby peoplesp1
, . . . , spN

. The
different paths are computed by introducing a set of random
goalsqgr that steer the robot to rapidly exploreCR × time.

E. Vertex propagation

Since the action calculatedur only propagates the robot
statesr, we must update the joint states for every person
considered. We propose a proactive approach in which the
computed planning actionur is integrated with the prediction
algorithm.

First of all, we need to infer human intentions. As pro-
posed in [4], we calculate the most expectableqgoalpi

for every
person on the scene. This calculation is carried out only once,
at the initialization of the algorithm (line 4 in Alg. 1).

We adapt the human prediction algorithm [5] to obtain a
single propagationsnew from a given initial statesparent ∈
ST .

Algorithm 2 first propagates the robot statesr accordingly
to ur and integrates the differential equation (2) by using
Euler integration. Then, for every person on the scene, and
if the person has not reached its inferred goalqgoalpi

(line 3 in
Alg. 2), an actionupi

is calculated depending on the people
on the scene and the new robot statesnewr (line 4 in Alg. 2).

F. Cost function and path selection

We propose a metric that measures social disturbances
while navigating: thesocial work [18]. The amount ofsocial
work carried out by the robot fromtini to thorizon:

WR =

thzn
∑

t=tini

fr(t) ·∆xr(t), (8)



where fr takes into account both the steering force (3) and
the summation of social-forces due to nearby people or other
obstacles (5) and it is multiplied by the variation of position
∆xr at eacht. Similarly, we can define the summation of
social work carried out by the people on the scene induced
by the robot movement:

WP =

thzn
∑

t=tini

∑

i∈P

fr,i(t) ·∆xi(t). (9)

We have measured thesocial work of the peopleWP due
to the robot plan, and thesocial work carried out by the
robotWR.

For every new vertex the total cost is:

J = ||xr − xgoal||+ kθ||θr − θgoal||+

krobotWR + kpeopleWP . (10)

Most of the time, reachingqgoalr may not be possible.
Nevertheless, the algorithm calculates several branches in the
tree T and returns the branch with minimum cost function
J at time thorizon.

VI. SIMULATIONS

Real experimentation is a delicate matter when there are
people involved. For this reason, we validate our planner
in a simulated environment before any real interaction with
people takes place. The simulated environment [7] consists
of static obstacles and multiple people modeled as dynamic
obstacles following the ESFM, quite similar to a real urban
environment.

The number of verticesK = 500 in the planner is fixed
throughout all simulations and experiments. The processing
time highly depends on the number of people evaluated since
we are considering the propagation of the state for every
person on each vertex calculated. The average processing
time, if an average of 8 people is considered to appear on the
scene, is around 0.19s, processed in a Intel Core2 Quad CPU
Q9650 @ 3.00GHz and memory 3.8 GiB. The simulated
scenario is as follows: the robot receives a query to a goal
while a group of pedestrians walk in the area in different
situations.

A. Learning parameters in simulations

Before evaluating the method performance, we should
provide an initial estimation of the planner parameters.
Parameters in (7) were manually chosen (cθ = 1.0 , ctime =
0.25) to build a tree without bias as explained in Sec. V-C.
For the parameters in (10) andthorizon, we have performed
over 7000 experiments using a Monte Carlo approach to
sample the cost parameters, and then, we averaged the
experiment performances to find the optimal values. We
provide statical robustness to the method by doing a large
number of experiments and then calculate the expectation of
the performance depending on the parameters. In Fig. 5 is
depicted the learning results for thethorizon parameter.
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Fig. 5. Learning results in the simulated environment for thethorizon
parameter, showing a minimum inthorizon = 5s for the average function.
These functions are normalized for comparing purposes.

A short thorizon results on a straight trajectory, where the
robot accelerates and stops if an obstacle appears, which
is not an efficient behavior. Intuitively, the higherthorizon
the better. However, as can be seen in Fig. 5 there is a
degradation of the performance of bothsocial works. As we
observed for high horizons, there were a short number of
branches in the tree to explore good solutions, and thus, a
higher number of vertices would be required.

The results,kθ = 1, krobot = 2, kpeople = 8 and
thorizon = 5s. These parameters are highly dependent on
the learning scenario and the number of verticesK.

B. Simulations testing

We have tested the algorithm in the same simulated
environment using the parameters obtained above. We have
compared our approach with areactive planner proposed in
[18], which takes into account people on the scene.

Execution time Robot social work Persons social work
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Fig. 6. Simulation results, normalized to thereactive approach results.

We have compared three different values as can be seen
in Fig. 6. The execution time refers to the average time for
the robot to get to its goal under the presence of people. Our
approach shows a better performance for thesocial work
produced by the people and the robot. These magnitudes
are clearly correlated since we have observed that in general
the proactive planner tries to describe trajectories that avoid
interactions if possible, while thereactive approach is not
“intelligent” enough to avoid unnecessary interactions on
time.

VII. E XPERIMENTS

Finally, we have implemented the algorithm to run in a
real robot, the Tibi&Dabo robots [7] in a controlled real
environment.



Fig. 7. Examples during experimentation in real environments.Dabo navigates while considering other people on the scene.In the bottom row of the
figure appears an interface, where people are plotted as green cylinders and their predictions are drawn in thez axis, which corresponds to time. The tree
of paths calculated by the robot appear in blue and the best path is a red line.

In Fig. 7 is depicted a series of experiments with people.
We observed a better behavior of the proactive kinodynamic
planner with respect to our previousreactive approach, al-
though more experiments are required, in different scenarios,
and more people on the scene. For more details, check
the videos at the author’s webpagehttp://www.iri.upc.edu/
people/gferrer

VIII. C ONCLUSION AND FUTURE WORK

In this paper we have presented a proactive kinodynamic
planner for urban environments that calculates in real timea
local path that minimizes the disturbances to other pedestri-
ans. The solution trajectories take into account kinodynamic
and nonholonomic restrictions which are mandatory consid-
erations for a realistic navigation in such highly time-variant
scenarios like urban environments.

Additionally, our approach shows proactive traits since the
robot tends to initiate change rather than reacting to events.
The cost for being proactive is a more intensive processing
since we must propagate the state of moving pedestrians
accordingly to the robot propagation.

The trajectory calculated minimizes the amount ofsocial
work produced by the robot navigation at the same time that
minimizes its navigation work and distance to goal.

For future works we need to extensively test the algorithm
in different environments and with more people.
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