8 research outputs found

    Unified Representation Of Decoupled Dynamic Models For Pendulum-Driven Ball-Shaped Robots

    Get PDF
    Dynamic models describing the ball-robot motion form the basis for developments in ball-robot mechanics and motion control systems. For this paper, we have conducted a literature review of decoupled forward-motion models for pendulum-driven ball-shaped robots. The existing models in the literature apply several different conventions in system definition and parameter notation. Even if describing the same mechanical system, the diversity in conventions leads into dynamic models with different forms. As a result, it is difficult to compare, reproduce and apply the models available in the literature. Based on the literature review, we reformulate all common variations of decoupled dynamic forward-motion models using a unified notation and formulation. We have verified all reformulated models through simulations, and present the simulation results for a selected model. In addition, we demonstrate the different system behavior resulting from different ways to apply the pendulum reaction torque, a variation that can be found in the literature. For anyone working with the ball-robots, the unified compilation of the reformulated dynamic models provides an easy access to the models, as well as to the related work.Peer reviewe

    Gyroscopic Precession In Motion Modelling Of Ball-Shaped Robots

    Get PDF
    This study discusses kinematic and dynamic precession models for a rolling ball with a finite contact area and a point contact respectively. In literature, both conventions have been applied. In this paper, we discuss in detail the kinematic and dynamic models to describe the ball precession and the radius of a circular rolling path. The kinematic model can be used if the contact area and friction coefficient are sufficient to prevent slippage. The dynamic precession model has significance in multi-body simulation environments handling rolling balls with ideal point contacts. We have applied both the kinematic and dynamic precession model to evaluate the no-slip condition of the existing GimBall-robot. According to the result, the necessity of an external precession torque may cause slipping at lower velocities than expected if ignoring this torque.Peer reviewe

    Kinematics and analysis of driven sphere by rollers

    Get PDF
    九州工業大学博士学位論文 学位記番号:生工博甲第376号 学位授与年月日:令和2年3月25日第1章 序論|第2章 ローラ駆動される球体の運動学|第3章 球体運動学の検証|第4章 ロボカップへの適用|第5章 結論及び展望九州工業大学令和元年
    corecore