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ABSTRACT 

Dynamic models describing the ball-robot motion form 
the basis for developments in ball-robot mechanics and 
motion control systems. For this paper, we have 
conducted a literature review of decoupled forward-
motion models for pendulum-driven ball-shaped robots. 
The existing models in the literature apply several 
different conventions in system definition and parameter 
notation. Even if describing the same mechanical 
system, the diversity in conventions leads into dynamic 
models with different forms.  As a result, it is difficult 
to compare, reproduce and apply the models available in 
the literature. Based on the literature review, we 
reformulate all common variations of decoupled 
dynamic forward-motion models using a unified 
notation and formulation. We have verified all 
reformulated models through simulations, and present 
the simulation results for a selected model. In addition, 
we demonstrate the different system behavior resulting 
from different ways to apply the pendulum reaction 
torque, a variation that can be found in the literature. 
For anyone working with the ball-robots, the unified 
compilation of the reformulated dynamic models 
provides an easy access to the models, as well as to the 
related work. 

INTRODUCTION 

Ball-shaped vehicles have been under development 
already over the last 120 years. The first patents on self-
propelled spherical toys were filed in the end of 19th 
century. Studies on dynamic modelling and steering of 
motor-driven balls started in 1990’s leading into 
emergence of computer controlled spherical mobile 
robots. (Ylikorpi and Suomela 2007) Recent studies on 
ball-shaped robots have described a variety of 
applications in different environments, including 

marine, indoors, outdoors and planetary exploration. 
Lately, commercial spherical robots have been 
introduced to the markets. The practical applications 
include surveillance, rehabilitation and gaming.  

Ball-shaped robots offer interesting and challenging 
modelling and control problems due to their 
extraordinary dynamic nature. In development of robot 
mechanics and control, simulation tools play an utterly 
important role. Simulators regularly represent the 
robotic system and its behavior, and they are used to 
verify the performance of the control system. The core 
of the simulator is the dynamic model describing the 
ball-robot motion, which also forms the base for the 
control system development. Thus, the properly 
formulated dynamic model is of a great importance for 
development of simulators and control algorithms. 

We have conducted a literature review of decoupled 
forward-motion models for pendulum-driven ball-
shaped robots. The survey covered 12 different robots 
and their models presented in 22 published papers. For 
describing the robot dynamic model, these publications 
present several different conventions in system 
parameters definition and notation, including various 
model simplifications. This divergence makes it 
difficult to compare, reproduce and apply the models 
available in the literature. In this paper, we reformulate 
in a unified notation all commonly found decoupled 
forward-motion models of pendulum-driven ball-shaped 
robots. Our reformulated models, without any 
simplifications, provide a detailed description of the 
used assumptions as well as the selected coordinate 
systems. The unified compilation of the reformulated 
dynamic models provides an easy access to the existing 
models. 

As is the common practice in the literature, we have 
verified the performance of each dynamic model 
through simulations in Matlab-software of MathWorks 
Inc. (Version 7.5.0.342, R2007b). Additionally, a 
comparative simulation was performed for each model 
in Adams multi-body simulation software of 
MSC.Software Corporation (Version MD Adams R3, 
Build 2008.1.0). In this context, such model validation 



 

 

with two parallel and independent simulation tools has 
been rarely presented before. In addition, we 
demonstrate the different system behavior resulting 
from different ways to apply the pendulum reaction 
torque, a variation that can be found also in the 
literature. For anyone working with the ball-shaped 
robots, we present in Appendix 1 the models in a hand-
book style providing a clear and easy access to the 
models, as well as to the related work behind them. 

RELATED WORK 

Ball-shaped robots represent a family of mobile robots 
that can be realized with several different mechanisms 
for actuation, some of which were briefly reviewed by 
Ylikorpi and Suomela (2007). Plenty of prior work has 
been conducted on kinematic and dynamic modelling of 
these robots. Li and Canny (1990), Jurdjevic (1993), 
and Bicchi et al. (1995) discuss the classical ball-plate –
problem. Halme et al. (1996) introduce a ball-robot 
equipped with a single driving wheel inside the hollow 
sphere.  Bicchi et al. (1997) present another ball robot 
with a unicycle driving inside the sphere. Camicia et al. 
(2000) continue the work developing a more advanced 
dynamic model. Zhan et al. (2011) present another ball-
robot based on a unicycle.  Mukherjee et al. (1999, 
2002) discuss the application of the ball-plate problem, 
path planning, and steering of a ball robot, while Das 
and Mukherjee (2004, 2006) develop more complex 
rolling paths. 

Svinin and Hosoe (2008), Svinin et al. (2012a, 2012b), 
and Morinaga et al. (2012) discuss kinematics, 
dynamics and control of a ball-robot carrying six 
flywheels. Karimpour et al. (2012), Joshi et al. (2007, 
2010), and Joshi and Banavar (2009) conduct an 
extensive discussion on a spherical robot driven by three 
and four momentum wheels. 

A motor-actuated hanging pendulum creates one 
possible driving mechanism, applied for several 
different ball robots (Koshiyama and Yamafuji 1992, 
1993; Michaud and Caron 2002; Bruhn et al. 2005; 
Kaznov and Seeman 2010; Yoon et al. 2011). Jia et al. 
(2009), Sang et al. (2011), and Zheng Y.L. (2011) add a 
momentum wheel on the pendulum. 

There are two popular methods to present the equations 
of motion of a pendulum-driven robot; A coupled model 
presents the full motion of the complete system. Various 
mathematical methods, such as Kane’s method, Euler-
Lagrange equation, and Maggi’s equations are often 
applied to create the coupled model (Jia et al. 2008, 
2009; Liu et al. 2008; Zhuang et al. 2008; Liu and Sun 
2010; Sang et al. 2011; Yu et al. 2011; Zheng, M. et al. 
2011; Zheng, Y.L. 2011; Gajbhiye and Banavar 2012; 
Balandin et al. 2013).  

Different from the coupled model, a decoupled model 
discusses steering and forward-driving motions 
separately. To mention some methods, decoupled 
models have been created with application of Newton-
Euler-equations, Euler-Lagrange equation, and 

Boltzmann-Hamel-equations. We have chosen to apply 
the Euler-Lagrange equation. Along with our new 
reformulated models, Appendix 1 presents the reference 
information for the original works. This survey 
concentrated on those 22 published models presenting 
the forward motion of pendulum-driven ball-robots.  

COMMON VARIATIONS IN MODEL 
PRESENTATION 

The decoupled forward-motion state of a pendulum-
driven ball-robot can be conveniently presented with the 
ball rotation angle, the pendulum rotation angle, and 
their time derivatives. The two rotation angles are 
commonly nominated as the generalized coordinates 
chosen to describe the system state. Ball position along 
the rolling plane couples directly to the ball rotation 
through a kinematic rolling constraint.  

Figure 1 shows one definition of the generalized 
coordinates θ1 and θ2, also used by Kim et al. (2009).  In 
this convention, the ball rotation angle θ1 measures from 
the ground vertical, and the pendulum elevation angle θ2 
is measured with respect to a reference fixed on the ball. 
Alternatively, the pendulum angle can be chosen to be 
the absolute one, while presenting the ball rotation with 
respect to the pendulum (Koshiyama and Yamafuji 
1993). Yet, as one more alternative, both rotation angles 
can be presented as absolute with respect to the ground 
(Cai et al. 2011). In addition and opposite to the case 
shown in Figure 1, the positive rotation direction of the 
ball can be selected to be clockwise (Yue et al. 2006; 
Kamaldar et al. 2011; Kayacan et al. 2012a). Table 1 
shows the possible permutations available for definition 
of the two generalized coordinates. All six variations 
can be found in the literature.   

In addition to the different definitions of the generalized 
coordinates, also the presentation of the ball inertia has 
different  forms.  In  most  of  the  cases  the  ball  inertia  is  
calculated around the ball center, but some models 
present the inertia around the contact point (Koshiyama 

Figure 1: Typical De-coupled Model of a Pendulum-
Driven Ball-Robot Moving Forward, Side-View 
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and Yamafuji 1993; Cai et al. 2011; Kamaldar et al. 
2011). Our representation calculates the inertia around 
the ball center. 

Different from the other references, Koshiyama and 
Yamafuji (1992, 1993) present the absolute pendulum 
rotation angle with respect to the ground horizontal. Our 
unified representation in Appendix 1 measures the 
absolute rotation angle from the ground vertical for all 
models. 

The literature presents cases where the pendulum 
absolute angular velocity is assumed small and the 
products of the angular velocities can then be neglected 
(Kim et al. 2009). In addition, sometimes small angles 
have been assumed thus changing the appearance of 
trigonometric functions (Kim et al. 2009; Liu et al. 
2009). In contrast, we present the complete dynamic 
equations without simplifications. 

Finally, the dynamic model is often presented in a 
matrix form. Literature shows a couple of different 
arrangements where the matrix elements and the 
coordinate vectors are shown in a different order 
(Koshiyama and Yamafuji 1993; Yue et al. 2006). 
Appendix 1 presents all models in a uniform 
arrangement.  

THE UNIFIED MODEL 

Selection of the Generalized Coordinates 

Figure 1 illustrates one possible selection of the 
generalized coordinates. Ball rotation angle θ1 is 
measured counterclockwise from the ground vertical to 
a reference fixed on the ball. Pendulum rotation angle θ2 
is measured counterclockwise from the reference on the 
ball  towards  the  pendulum  arm.  Table  2  explains  the  
parameters and variables used in Figure 1 and in our 
unified notation.   

In the convention shown in Figure 1, the ball angle θ1 is 
expressed as an absolute coordinate. The absolute 
coordinate presents directly the ball rotation angle with 
respect to the inertial world-coordinate system. In 
contrast, the pendulum rotation angle θ2 is expressed as 
a relative coordinate. The relative coordinate tells only 
the pendulum position with respect to the ball. As an 
alternative presentation for the pendulum orientation, 

Figure 1 presents also the absolute pendulum angle θ2abs 
that measures the pendulum position directly from the 
ground vertical towards the pendulum arm. 

Derivation of the Equations of Motion  

The Euler-Lagrange equation can be used to create the 
equations of motion (Symon 1960; Goldstein et al. 
2002), and it has been often applied also with ball-
shaped robots (Liu et al. 2008; Jia et al. 2009; Zhang et 
al. 2009; Kayacan et al. 2012a). Lagrangian function L 
is defined as the difference between the kinetic energy T 
and the potential energy V, as shown in (1). Generalized 
forces Qi affecting the system can then be solved 
through derivation of the Lagrangian with respect to 
time and the generalized coordinates qi, as presented in 
(2), known as the Euler-Lagrange equation.  

 L = T-V  (1) 

 
̇
− =  (2) 

Referring to the convention in Figure 1, eqs. (3) and (4) 
present the kinetic and potential energy of the spherical 
shell and the pendulum. The Lagrangian L in (1) and the 
differentials on the left side of (2) can then be solved.  

Table 1: Variants in Definition of the Generalized Angular Coordinates 

 Options Number of 
options 

Selected absolute coordinate Absolute Ball angle, 
relative Pendulum angle 

Absolute Pendulum angle, 
relative Ball angle Both absolute 3 
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2 x 3 = 6 

Illustration in Appendix 1 C) D) A) F) E) B)  

Occurrences  in the selected literature 2 3 2 1 1 13  

Table 2: Parameters for the Dynamic Models in 
Figure 1 and Appendix 1 

M1  ball mass M2  pendulum mass 

R  ball radius e pendulum length 

J1  ball inertia J2  pendulum inertia 

θ1  ball angle θ2  pendulum angle 
θ2abs  absolute pendulum angle 

̇   ball angular velocity ̇  pendulum angular velocity 

c1  ball rolling friction 
coefficient 

c2  pendulum joint friction 
coefficient 

T1  ball kinetic energy T2  pendulum kinetic energy 

V1  ball potential energy V2  pendulum potential energy 

vx  horizontal ball 
velocity 

τ  pendulum motor torque 
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= − ̇ + ̇ + ̇ cos( + )

+ ̇ + ̇ sin( + ) + ̇ + ̇

(3) 

 
= 0

= − cos( + )  (4) 

As presented by Koshiyama and Yamafuji (1993),  the 
result from (2) can be expressed in a configuration 
space according to (5), where A, B, C, D and G denote 
the matrices including mass and inertia terms, 
centrifugal terms, coriolis terms, viscous friction, and 
gravitational forces respectively.  Torque vector Q 
includes the generalized forces, i.e. the torques affecting 
the system.  

11 12
21 22

̈
̈ + 11 12

21 22
̇
̇ +

11
21

̇ ̇ + 11 12
21 22

̇
̇ + 11

21 =  (5) 

The left side of (5) can be acquired through the 
derivations shown in (2). However, the contents of the 
torque vector Q on  the  right  side  deserve  some  
discussion, which has not been conducted in the related 
literature before: The two generalized torques Q1 and Q2 
relate to the two angular coordinates θ1 and θ2 shown in 
Figure 1.  The ball-robot carries a motor that drives the 
pendulum with respect to shell. The choice of the 
generalized coordinates defines how the motor torque 
and its reaction torque project to the generalized 
torques. Symon (1960, p. 354) notes: ‘…the mutual 
forces which the particles exert on each other ordinarily 
depend on the relative coordinate.’  Upon application of 
the Euler-Lagrange equation, the relative motion 
between the bodies takes into consideration also the 
reaction forces between the bodies. Contradictorily, the 
use of absolute coordinates neglects the reaction forces 
that then need to be separately taken into account.  

To give an example, Figure 1 presents the pendulum 
angle θ2 relative to the ball angle. Because of the 
relative expression of the pendulum angle, the reaction 
torque from the pendulum motor becomes automatically 
into consideration through the Euler-Lagrange equation. 
The pendulum driving torque τ is then included in the 
system input Q2 in (5), but the reaction torque is not 
added explicitly in the ball torque Q1. However, if the 
absolute pendulum angle θ2abs was used instead, the 
reaction torque must be added also as an input on the 
ball torque Q1.  

A proof for the above made statement can be found by 
calculating symbolically eqs. (1) - (5) using both 
absolute and relative pendulum angles and notifying the 
appearance of torques Q1 and Q2 in  the  result.  The  
straightforward calculation is omitted here. 

The literature presents both approaches, applying either 
relative or absolute pendulum coordinate. However, the 
convention in application of the reaction torque varies. 
We apply the reaction torque consistently upon need, as 
is described above, confirmed by the parallel 
simulations in Adams, and reported in Appendix 1. For 
comparison, our simulation results present also the 
different system behavior resulting from the different 
application of the reaction torque. 

Modelling the Viscous Friction 

We supplement all dynamic models with viscous 
friction, which has been previously presented for some 
formulations. For the given velocity vector ̇ , the 
manually calculated friction matrix D provides proper 
resistance torque for the ball and the pendulum.  In the 
definition of the friction matrix, it is important to note 
that the frame of reference must be similar to that used 
in derivation of the Lagrangian in (1). A similar friction 
model was presented by Koshiyama and Yamafuji 
(1993), as shown in Appendix 1 A).  

Numerical Simulation  

All six dynamic models, created with application of (1) 
and (2), were implemented in Matlab for verification. In 
the simulation, the dynamic model formulated in 
configuration space (5) was applied to solve the 
accelerations for the given input torque Q. The joint 
velocities and angles were then integrated with ode45 –
solver function. In addition, a parallel model of the 
system was built in Adams multi-body simulation 
software and the results were compared for validation. 

The ball-robot model is defined for the Adams-software 
by describing the mechanical structure and the physical 
properties of the robot. Adams then autonomously 
creates the dynamic model needed for simulation. Thus, 
Adams provides a model that is independent from the 
one created for Matlab, and can be used as a reference 
in validation of the derived models. 

SIMULATION RESULTS 

All models collected in Appendix 1 were simulated both 
in Matlab and in Adams. Comparison of the simulation 
results verified the correctness of the models. For the 
sake of brevity, we present the simulation results only 
for the model according to Figure 1 and applying the 
formulation C) in Appendix 1. 

Figure 2 A) shows the open-loop response for a given 
pendulum torque impulse. The input torque has a form 
of a cosine function with a 5-s period and 1-Nm peak 
value. The integration result in Matlab agrees well with 
the simulation result in Adams. No difference is visible 
between the two models in Figure 2 A). Regarding the 
earlier discussion on the observed variation in 
application of the reaction torque, the third simulation 
result in Figure 2 A) reveals the effect from the excess 
reaction torque in Q1.  Figure  2  B)  demonstrates  the  



 

 

identical behavior of the two independent simulation 
models; one in Matlab, another in Adams.  

Figure 3 repeats the simulations in a closed-loop with a 
PI-controlled ball velocity. The target ball velocity is -5 
rad/s and the controller gains are P = 0.1 and I = 0.3. In 
the third simulation, the effect from the excessive 
reaction torque is clear leading into different conclusion 
about system dynamics and highly different prediction 
of the needed pendulum motor torque. The result 
underlines the importance of the correct dynamic model, 
being the subject of this paper. Further development and 
discussion on the control algorithms remain as future 
work.  

Simulations of all model formulations in Appendix 1 
produce the same results. In the simulations, the robot 
model represents the GimBall-robot developed at Aalto 
University having the properties: M1 = 3.294 kg, M2 = 
1.795 kg, R = 0.226 m, e = 0.065 m, J1 = 0.0633 kgm2, 
J2 = 0.0074 kgm2, c1 = 0.02 Nms/rad, c2 = 0.2 Nms/rad 
and g = 9.81 m/s2.  

The models were integrated in Matlab using ode45-
solver with the following settings: RelTol = 10-6, 
AbsTol = 10-10,  MaxStep  =  10-3 and InitialStep = 10-6. 
The simulator settings in Adams were the 
corresponding.  

CONCLUSIONS AND FURTHER WORK 

The dynamic models describing ball-robot motion form 
the basis for the developments in ball-robot mechanics 
and motion control algorithms. Thus, the dynamic 

model holds an extremely important position in the 
research on the ball-shaped robots.  

Because of the existing diversity in notation and model 
contents, it is difficult to compare, reproduce and apply 
the models available in the literature. To facilitate 
model comparison and re-use, we have in this paper 
reformulated all common decoupled forward-motion 
models of pendulum-driven ball-shaped robots. The 
reformulated models, created with the application of 
Euler-Lagrange equation while applying a unified 
notation and harmonized formulation, are collected in 
Appendix 1. 

All reformulated models have been validated with 
parallel simulations in Matlab and Adams multi-body 
simulation software. The two independent simulation 
results show an excellent agreement thus validating the 
models. Additional simulation results demonstrate the 
effect from the different conventions in application of 
reaction torque.  

Clear, correct and harmonized description of the 
dynamic models in a hand-book style is useful for their 
application in further developments. These models, 
being  the  topic  of  this  paper,  set  the  basis  for  further  
work of the control algorithms. Our work continues 
with extension of the dynamic model to consider also 
other dynamic cases than the pure rolling along a level 
surface, as well as to consider a robot structure different 
from an ideal rigid sphere. Practical experiments and 
addition of the Coulomb friction model are foreseen. 

 

Figure 2: A) In an open-loop simulation, an excess 
reaction torque in Q1 causes erroneous system response. 

B) Ball location difference between the simulation 
results is < 2·10-8 m. Inset: the applied pendulum torque 

 
Figure 3: A) In a closed-loop, a PI-controller stabilizes 
the ball velocity. Excess reaction torque in Q1 causes a 
different system response. B) Excess reaction torque 

causes error in the simulated pendulum driving torque  
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APPENDIX 1 

THE COMPLETE DYNAMIC MODELS IN UNIFIED REPRESENTATION 

Unless otherwise stated, the ball kinetic energy is:   = ̇ + ̇  .  

‘τ’ presents the pendulum motor torque. 

The given elements for A, B, C, D, G, and Q complete the configuration space presentation: 

11 12
21 22

̈
̈ + 11 12

21 22
̇
̇ + 11

21
̇ ̇ + 11 12

21 22
̇
̇ + 11

21 =  

 
Figure A1: Absolute Pendulum Angle,  
Relative Ball Angle in Same Direction 
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A) Absolute Pendulum Angle, Relative Ball 
Angle in Same Direction  

11 = + ( + )  
12, 21 = + ( + ) − cos( ) 
22 = + + ( + ) + − 2 cos( ) 
12, 22 = sin( ) 
11 = ( + ) 
12, 21, 22 =  
2  =  sin( ) 
1 = −  
2 = 0 

 
Applicable References: (Koshiyama and Yamafuji 1992, 
1993) 
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Figure A2: Absolute Ball Angle,  

Absolute Pendulum Angle in Opposite Direction 
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1
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B) Absolute Ball Angle, Absolute Pendulum 
Angle in Opposite Direction 

11 = + ( + )  
12, 21  = cos( ) 
22 = +  
12 = − sin( ) 
11 = ( + ) 
12, 21, 22 =  
2  =  sin( )  
1 =  
2 =  

 
Applicable References: (Yue et al. 2006; Liu et al. 2009; 
Zhang et al.  2009; Ghanbari et al.  2010; Liu et al.  2012; Yu 
et al. 2012a; Yu et al. 2012b Yue and Liu 2012a; Yue and 
Liu 2012b; Mahboubi et al. 2013; Yue and Liu 2013;) 
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Figure A3: Absolute Ball Angle,  

Relative Pendulum Angle in Same Direction 
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C) Absolute Ball Angle, Relative Pendulum 
Angle in Same Direction   

11 = + + + ( + ) − 2 cos( + ) 
12, 21  = + − cos( + ) 
22 = +  
11, 12 = sin( + ) 
11 = 2 sin( + ) 
11 =  
22 =   
1  =  sin( + )  
2  =  sin( + )  
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Applicable References: (Nagai 2008, Kim et al. 2009) 

 
Figure A4: Absolute Ball Angle,  

Relative Pendulum Angle in Opposite Direction 
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D) Absolute Ball Angle, Relative Pendulum 
Angle in Opposite Direction 

11 = + + + ( + ) − 2 cos( − ) 
12, 21  = − − + cos( − ) 
22 = +  
11, 12 = sin( − ) 
11 = −2 sin( − ) 
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22 =  
1  =  sin( − )  
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Applicable References: (Kayacan et al. 2012a, 2012b, 
2012c) 

 
Figure A5: Absolute Ball Angle,  

Absolute Pendulum Angle in Same Direction 
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E) Absolute Ball Angle, Absolute Pendulum 
Angle in Same Direction 

11 = + ( + )  
12, 21  = − cos( ) 
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12 = sin( ) 
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22 =   
2  =  sin( )  
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Applicable Reference: (Cai et al. 2011) 
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Figure A6: Absolute Pendulum Angle,  
Relative Ball Angle in Opposite Direction 
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