25 research outputs found

    Nonconvex Nonsmooth Low-Rank Minimization via Iteratively Reweighted Nuclear Norm

    Full text link
    The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm based relaxed convex problem usually leads to a suboptimal solution of the original rank minimization problem. In this paper, we propose to perform a family of nonconvex surrogates of L0L_0-norm on the singular values of a matrix to approximate the rank function. This leads to a nonconvex nonsmooth minimization problem. Then we propose to solve the problem by Iteratively Reweighted Nuclear Norm (IRNN) algorithm. IRNN iteratively solves a Weighted Singular Value Thresholding (WSVT) problem, which has a closed form solution due to the special properties of the nonconvex surrogate functions. We also extend IRNN to solve the nonconvex problem with two or more blocks of variables. In theory, we prove that IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthesized data and real images demonstrate that IRNN enhances the low-rank matrix recovery compared with state-of-the-art convex algorithms

    Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis

    Full text link
    Spectral Clustering (SC) is a widely used data clustering method which first learns a low-dimensional embedding UU of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on U⊤U^\top to get the final clustering result. The Sparse Spectral Clustering (SSC) method extends SC with a sparse regularization on UU⊤UU^\top by using the block diagonal structure prior of UU⊤UU^\top in the ideal case. However, encouraging UU⊤UU^\top to be sparse leads to a heavily nonconvex problem which is challenging to solve and the work (Lu, Yan, and Lin 2016) proposes a convex relaxation in the pursuit of this aim indirectly. However, the convex relaxation generally leads to a loose approximation and the quality of the solution is not clear. This work instead considers to solve the nonconvex formulation of SSC which directly encourages UU⊤UU^\top to be sparse. We propose an efficient Alternating Direction Method of Multipliers (ADMM) to solve the nonconvex SSC and provide the convergence guarantee. In particular, we prove that the sequences generated by ADMM always exist a limit point and any limit point is a stationary point. Our analysis does not impose any assumptions on the iterates and thus is practical. Our proposed ADMM for nonconvex problems allows the stepsize to be increasing but upper bounded, and this makes it very efficient in practice. Experimental analysis on several real data sets verifies the effectiveness of our method.Comment: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 201
    corecore