4 research outputs found

    Non-size increasing Graph Rewriting for Natural Language Processing

    Get PDF
    International audienceA very large amount of work in Natural Language Processing use tree structure as the first class citizen mathematical structures to represent linguistic structures such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees: for instance, in the sentence "Max decides to leave", "Max" is the subject of the both predicates "to decide" and "to leave". Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers, we discussed the interest to use graphs rather than trees to deal with linguistic structures and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to Natural Language Processing do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense "predictable" from the input data and so, we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. In our framework, we show that uniform termination is undecidable and that non-uniform termination is decidable. We define termination techniques based on weight, we prove the termination of weighted rewriting systems and we give complexity bounds on derivation lengths for these rewriting systems

    Non-simplifying Graph Rewriting Termination

    Get PDF
    So far, a very large amount of work in Natural Language Processing (NLP) rely on trees as the core mathematical structure to represent linguistic informations (e.g. in Chomsky's work). However, some linguistic phenomena do not cope properly with trees. In a former paper, we showed the benefit of encoding linguistic structures by graphs and of using graph rewriting rules to compute on those structures. Justified by some linguistic considerations, graph rewriting is characterized by two features: first, there is no node creation along computations and second, there are non-local edge modifications. Under these hypotheses, we show that uniform termination is undecidable and that non-uniform termination is decidable. We describe two termination techniques based on weights and we give complexity bound on the derivation length for these rewriting system.Comment: In Proceedings TERMGRAPH 2013, arXiv:1302.599
    corecore