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A very large amount of work in Natural Language Processing use tree structure as the

first class citizen mathematical structures to represent linguistic structures such as

parsed sentences or feature structures. However, some linguistic phenomena do not cope

properly with trees: for instance, in the sentence “Max decides to leave”, “Max” is the

subject of the both predicates “to decide” and “to leave”. Tree-based linguistic

formalisms generally use some encoding to manage sentences like the previous example.

In former papers (Bonfante et al., 2011; Guillaume and Perrier, 2012), we discussed the

interest to use graphs rather than trees to deal with linguistic structures and we have

shown how Graph Rewriting could be used for their processing, for instance in the

transformation of the sentence syntax into its semantics. Our experiments have shown

that Graph Rewriting applications to Natural Language Processing do not require the

full computational power of the general Graph Rewriting setting. The most important

observation is that all graph vertices in the final structures are in some sense

“predictable” from the input data and so, we can consider the framework of Non-size

increasing Graph Rewriting. In our previous papers, we have formally described the

Graph Rewriting calculus we used and our purpose here is to study the theoretical

aspect of termination with respect to this calculus. Given that termination is

undecidable (cf. Plump (Plump, 1998)) in general, we define termination criterions based

on weight, we prove the termination of weighted rewriting systems and we give

complexity bounds on derivation lengths for these rewriting systems.
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1. Introduction

Linguists introduce different levels to describe a natural language sentence. Starting from

a sentence given as a sequence of sounds or as a sequence of words; among the linguistic

levels, two are deeply considered in literature: the syntactic level (a grammatical analysis

of the sentence) and the semantic level (a representation of the meaning of the sentence).

These two representations involve mathematical structures such as logical formulae, λ-

terms, trees and graphs.

Linguistic theories of syntax split in two main branches. The firsts are based on the

notion of dependency structure, the seconds on constituents. Dependency structures al-

ready appeared in the Ancient History, for instance in the Sanskrit grammar of Pān. ini;

it is also used by Arabic grammarians of the Middle Age; a modern presentation of

dependency structures is due to Tesnière (Tesnière, 1959). A dependency structure is

an ordered sequence of words, together with some relations between these words. Let

us consider the English sentence “I see that Mike begins to work”. This sentence has a

dependency structure like the one below:

I see that Mike begins to work

SUBJ SUBJ AUX

CPL COMP

COMP

The second linguistic model of syntax is based on the notion of constituents (mainly

promoted by Chomsky) in which words are grouped in a hierarchy of typed constituents.



Non-size increasing Graph Rewriting for Natural Language Processing 3
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Our approach would fit both representations. For the sake of clarity, in this contribu-

tion, we will present the examples with dependency structure which we think are a little

bit more intuitive.

There is a large debate in the literature about the mathematical nature of the structures

needed for natural language syntax: do we have to consider trees or graphs? Many lin-

guistic theories argue for the tree nature of these structures which are simpler both from

theoretical and practical views. However, as we shall see, it is clearly insufficient. Usually,

linguists add some external structure to deal with problematic cases (they identify nodes

by means of coreferences or path equations). Working directly with graphs avoids these

encodings. We think that this is the best way to obtain a simple, tractable and natural

computational model. Let us illustrate the limitations of tree-representations with some

linguistic examples. Consider for instance the sentence “Bill expects Mary to come”, the

node “Mary” is shared, being the subject of “come” and the object of “expects”:

Bill expects Mary to come

SUBJ OBJ AUX

SUBJ

COMP

Many examples with coordination induces sharing of some nodes: in the sentence “Nico-

las gave a book and Helen lent a newspaper about economy to Peter yesterday”, the two

verbs “gave” and “lent” shared their subject “Nicolas”, and the two prepositional phrases

“to Peter” and “yesterday”.

The situation can be even worse: cycles may appear such as in the sentence below

where edges in the cycle are drawn with dashed line.

a book which is hard to read

DET ANT SUBJ ATS AUX

REL COMP

OBJ

For the semantic representation of natural language sentences, first order logic formulae

are widely used. But, natural language can be highly ambiguous; this is mainly due to

the fact that scope of quantifiers are not given explicitly in sentence. To avoid to produce
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many formulae for a given sentence, new representations of semantic were introduced

(they are know as underspecified semantic representations). As an example, one of the

underspecified semantic representations is the DMRS (Dependency Minimal Recursion

Semantics) presented in (Copestake, 2009). The structure for the sentence “The Dog

whose toy the cat bit barked” is given in Figure 1. In DMRS structure, three kind of

relations are described: first, relations ARG1, ARG2 link predicate to their semantic

arguments; second relation RSTR described the quantifier restrictions; the unoriented

relation EQ describes scope constraints.

bytevtheq

catn

R
S
T
R

theq

dogn

R
S
T
R

barkv

A
R
G
1

possv

A
R
G
2

toyn

A
R
G
1

A
R
G
1

A
R
G
2E

Q

E
Q

defq

R
S
T
R

Fig. 1. DMRS structure for the sentence “The Dog whose toy the cat bit barked”

The UNL project (Uchida et al., 2006) is another example of a framework where

graphs are used to encode deep linguistic information as an intermediate structure in a

multilingual communication system.

At the syntax level, considering the fixed order of the words of the sentence, it may be

possible to use some edge inversion and the transform our graphs into DAGs. However,

at the semantic level there is no more fixed ordering between nodes and so there is no

canonical way to turn graphs into DAGs.

To describe transformations (in both ways) between flat structures and syntactic struc-

tures or between syntactic structures and semantics structures, computational linguists

have invented a lot of solutions based on many computational models. To cite some

of them, we note those using finite state automata (with Markov Models, see for in-

stance (Roche and Schabes, 1997)), those based on λ-calculus (Montague, 1970; Mon-

tague, 1973), or Natural Language Processing (NLP) specific solutions (unifications based

systems like HPSG (Pollard and Sag, 1994), LFG (Kaplan and Bresnan, 1982) or Tree

Adjoining Grammars (Vijay-Shanker and Joshi, 1988)).

It is somewhat surprising that Graph Rewriting Systems (GRS) have been hardly

considered so far. Not so far from being extensive, we mention (Hyvönen, 1984; Bohnet

and Wanner, 2001; Crouch, 2005; Jijkoun and de Rijke, 2007; Bédaride and Gardent,

2009; Chaumartin and Kahane, 2010). To explain that, GRS implementations are usually

considered to be too inefficient to justify their extra-generality. For instance, pattern

matching does not take linear time where linear time is usually seen as an upper limit

for fast treatment.
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However, if one drops for a while the issue of efficiency, the use of GRS is promising.

Indeed, linguistic considerations can be most of the time expressed by some relations

between a few words. Thus, they are easily translated into rules. To illustrate this point,

in (Bonfante et al., 2011), we proposed a syntax to semantics translator based on GRSs:

given the syntax of a sentence, it outputs the different meaning associated to this syntax.

In (Guillaume and Perrier, 2012), the system was applied to a large corpus (the French

Treebank).

In the two earlier mentioned studies, we tried to delineate what are the key features

of graph rewriting in the context of Natural Language Processing. We come back to it

in the next section. Roughly speaking, node creation are strictly restricted, edges may

be shifted from one node to another and there is a need for negative patterns. Based on

this analysis, we define here a suitable framework for NLP (see Section 3). As a matter

of facts, our application performs very common transformations in NLP, which, in other

words, means that the features provided by our framework can be seen as the minimal

requirements in terms of expressivity of an NLP oriented Graph Rewriting Semantics.

Indeed, compared to term rewriting, the semantics of graph rewriting is problem-

atic: different choices can be made in the way the context is glued to the rule appli-

cation (Rozenberg, 1997). As far as we see, our notion does not fit properly the DPO

approach due to unguarded node deletion nor the SPO approach due to the shift com-

mand, as we shall see. Thus we will provide a complete description of our notion. We

have chosen to present it in an operational way and we leave for future work a categorial

semantics. We also leave as future work the comparison of our definition with other algo-

rithmic approaches to graph rewriting like (Janssens and Rozenberg, 1982) and (Schürr,

1997).

One of the main issues we have been faced with is to control globally computations

by rewriting. Indeed, since each step of computation is fired by some local condition

in the whole graph, one has no/few grip on the sequence of rewriting steps. Thus, the

more rules, the more interactions between rules, and the consistency of the whole system

becomes difficult to maintain. Moreover, some rules are not written by hand. Indeed, to

take into account the particular behavior of some words, some rules are directly synthe-

sized from some linguistic resources. For instance, a verb may have an intransitive form,

a transitive form or both forms. This property can be extracted from syntactic lexicons

which describes the sub-categorization frames for each verbs. The role of the NLP pro-

grammer is then to define the shape of the rules depending on the lexicon. To give an

idea of the size of programs, our application involves 571 rules among which 379 have

been produced out of the French verb valency lexicon Dicovalence (Van den Eynde

and Mertens, 2003). To keep the general coherence, to ease the development and the

maintenance of the system, we have organized rules in modules (applied sequentially). A

module is a set of rules that is linguistically consistent and represents a particular step

of the transformation. As an illustration, in our system, one of them turns a sentence

in passive form to its active form. Another module resolves the anaphoric links which

are internal to the sentence and determined by the syntax. In our proposal, there are 34

modules.

Generally speaking, the ambiguity of the meaning of a sentence is a very common
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phenomenon which cannot be avoided. Technically, this implies that the relation between

the syntax of sentences to their semantics is not functional, which implies that the graph

rewriting systems themselves are not confluent. Anyway, some modules are confluent. In

that case, since we can restrict computations to only one normal form, the process is

much more efficient. In our system, only 8 of the 34 modules are not confluent.

The large amount of rules, the fact that they are not written by hand and the large

number of modules justify to have some tools to verify some properties of modules. In

Section 5, we provide two termination methods based on a weight analysis. There are two

reasons we have been interested by the property of termination. First, there is a direct

motivation: in our NLP application, any computations should terminate. If it is not

the case, it means that the rules where not correctly drawn. Then, termination ensures

partly the correctness of the transformation. There is also an indirect reason to consider

termination: one way of establishing confluence is through Newman’s Lemma (Newman,

1942) which requires termination.

In Section 6, we consider two properties of the above mentioned termination methods.

First, we show that they are decidable, that is the existence of weights can be computed

statically from the rules, and thus we have a fully automatic tool to verify termination.

Obviously, it is not complete. In a second step, we evaluate the strength of the two meth-

ods. To do that, we consider what restrictions they impose on the length of computations.

We get quadratic time for the first method, polynomial time for the second.

2. Linguistic motivations

Without any linguistic exhaustivity, we highlight in this section some crucial points of

the kind of linguistic transformation we are interested in and hence the relative features

of rewriting we have to consider. These examples below explain and justify the main

technical choices we have made in our Graph Rewriting definition.

2.1. Node preservation property

As linguistic examples above suggest, the goal of linguistic analysis is mainly to describe

different kinds of relations between elements that are present in the input structure. As

a consequence, the set of nodes in the output structure is directly predictable from the

input and only a very restrictive notion on node creation is needed. For instance, we

have to add a subject node for each infinitive verb; we also have to split some well-known

words which produces several semantics items (like “whose” in Figure 1 and the two

corresponding items in the DMRS structure possv and defq).

In practice, these node creations can be anticipated in some enriched input structure

on which the whole transformation can be described as a non-size increasing process.

This property of node preservation is also present in many widely-used formalism.

For instance, in TAG (Vijay-Shanker and Joshi, 1988), in Minimalist Grammars (Sta-

bler, 1997) or in Abstract Categorial Grammars (de Groote, 2001), input structures are

lexicalized (i.e. are directly linked to words of the language) and the operations used dur-

ing the analysis process are non-size increasing: substitution and adjunction for TAG,
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merge and move for Minimalist Grammars and linear β-reduction for Abstract Categorial

Grammars.

2.2. Edge shifting

Recall the dependency structure of the sentence “I see that Mike begins to work”:

I see that Mike begins to work

SUBJ SUBJ AUX

CPL COMP

COMP

In this case, the verb “begins” is called a raising verb and we know that “Mike” is the

deep subject of the verb “work”; “begins” being considered as a modifier of the verb. To

recover this deep subject, one may imagine a local transformation of the graph which

turns the first graph below into the second one.

X Y
begins

Z
to

T

SUBJ AUX

COMP

X Y
begins

Z
to

T

AUX

MOD

SUBJ

Of course, this kind of transformation can be expressed in any graph rewriting frame-

work. However, in our example above, a direct application of the transformation leads

to the structure below:

I see that Mike begins to work

SUBJ AUXCPL

MODCOMP

SUBJ

which actually is not the right structure. Indeed, the transformation should shift what

the linguists call the head of the phrase “Mike begins to work” from the word “begins” to

the word “work” with all relative edges. In that case, the transformation should produce

the next structure:

I see that Mike begins to work

SUBJ AUX

MOD

SUBJ

CPL

COMP

In a more general setting, our transformations may have to specify the fact that all

incident edges of some node X must be transported to some other node Y . We call this

operation shift.

To describe our graph rewriting rules, we introduce a system of commands (like
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in (Echahed, 2008)) which expresses step by step the modifications applied on the input

graph. The transformation described above is performed in our setting as follows:

X Y
begins

Z
to

T

SUBJ AUX

COMP del edge(Y,SUBJ,X)

del edge(Y,COMP,T)

add edge(T,SUBJ,X)

add edge(T,MOD,Y)

shift(Y,T)

2.3. Negative conditions

In some situation, rules must be aware of the context of the pattern to avoid unwanted

ambiguities. When computing semantics out of syntax, one has to deal with passive

sentence; the two sentences below show that the agent is optional.

The banana was eaten

DET AUX

SUBJ

The banana was eaten by Mike

DET AUX AGT OBJ

SUBJ

In order to switch to the corresponding active form, two different linguistic transforma-

tions have to be defined for these two sentence; but, clearly, the first graph is a subgraph

of the second one. We don’t want the transformation for the short passive on the left

to apply on the long passive on the right. we need to express a negative condition like

“there is no out edge labeled by AGT out of the main verb” to prevent the unwanted

transformation to occur.

2.4. Long distance dependencies

Most of the linguistic transformation can be expressed with successive local transforma-

tion like the one above. Nevertheless, there are some cases where more global rewriting

is required; consider the sentence “The women whom John seems to love”, for which we

consider the syntactic structure above:

The woman whom John seems to love

DET SUBJ AUX

COMPMOD_REL

OBJ

One of the steps in the semantic construction of this sentence requires to compute the

antecedent of the relative pronoun “whom” (the noun “woman” in our example). The

subgraph we have to search in our graph is depicted as a non-local pattern on the left

and the graph modification to perform is given on the right.

X
PRO_REL

Y Z T

OBJ (OBJ|COMP)* MOD_REL

add edge(X,ANT,T)



Non-size increasing Graph Rewriting for Natural Language Processing 9

The number of OBJ or COMP relations to consider (in the relation depicted as

(OBJ|COMP)* in the figure above) is unbounded (in linguistics, this phenomenon is

called long distance dependencies); it is possible to construct grammatical sentences

with an arbitrary large number of relations.

As we want to stay in the well-known framework of local rewriting, we implement such

non local rules with sets of local transformations. The first rule (on the left) creates an

edge TMP which serves as a pointer. The second rules updates the pointer to find the

end of the chain made of COMP and OBJ labels.

X
PRO_REL

Y

OBJ

add edge(X,TMP,Y)

X Y Z

TMP COMP

del edge(X,TMP,Y)

add edge(X,TMP,Z)

X Y Z

TMP OBJ

del edge(X,TMP,Y)

add edge(X,TMP,Z)

When the TMP pointer reaches the end of the chain, we can update the link between

the PRO REL and its target. In the end, we remove the temporary link TMP.

X Z T

TMP MOD_REL

add edge(X,ANT,T)

del edge(X,TMP,Z)

3. Graph Rewriting for NLP

Before we enter into the technical sections, let us define some useful notations. First, we

use the notation ~c to denote sequences. The empty sequence is written ∅. The length of a

sequence is denoted by |~c |. We use the same notation for sets: the empty set is denoted

∅ and the cardinality of a set S is written |S|. The context will make clear whether we

are talking about sequences or sets.

Given a function f : X → Y and some sets X ′ ⊆ X and Y ′ ⊆ Y , we define f(X ′) ,
{f(x) | x ∈ X ′} and f−1(Y ′) , {x ∈ X | f(x) ∈ Y ′}; the restriction of the function

f to the domain X ′ is f |X′ : x′ ∈ X ′ 7→ f(x′). The function cX : x ∈ X 7→ c ∈ Y is

the constant function on X. The identity function is written 1. Finally, given a function

f : X → Y and (x, y) ∈ X × Y , the function f [x 7→ y] maps t 6= x to f(t) and x to y.

The set of natural numbers is N, integers are denoted by Z. Given two integers a, b,

we define [a, b] = {x ∈ Z | a ≤ x ≤ b}.
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3.1. Graphs

The graphs we consider are directed graphs with both labels on nodes and labels on

edges. We restrict the edge set: given some edge label e, there is at most one edge labeled

e between two given nodes n and m. This restriction reflects the fact that, in NLP

application, our edges are used to encode linguistic information which are relations. We

make no other explicit hypothesis on graphs: in particular, graphs may be disconnected,

or have loops.

All along this paper, we suppose given two finite sets ΣE of edge labels, ΣN of node

labels and an enumerable set U called universe, where graph nodes live.

Definition 3.1 (Graph). A graph G is defined as a triple (N , `, E) where

— N is a finite set of nodes: N ⊂ U ;

— ` is a labeling function: ` : N 7→ ΣN ;

— E is a set of edges: E ⊆ N × ΣE ×N .

Let n,m ∈ N and e ∈ ΣE . When there is an edge from n to m labelled e (i.e. (n, e,m) ∈
E), we write n

e−→ m or n −→ m if the edge label is not relevant. If G denotes some

graph (N , `, E), then NG, `G, EG denote respectively N , ` and E . The number of nodes

of a graph G is written |G|. Given a graph G, two nodes n,m ∈ NG and e ∈ ΣE , let

G + {n e−→ m} , 〈NG, `G, EG ∪ {n
e−→ m}〉. We use the + notation to stress the fact

that n
e−→ m is not intended to be in G.

Example 3.1. Let ΣE = {A,B,C,D,E}, ΣN = {♣,♥} and G0 = ({g0, g1, g2}, `,
{(g0, A, g1), (g2, A, g1), (g0, B, g1), (g1, C, g2), (g0, D, g2), (g0, E, g0)}) with `(g0) = `(g2) =

♣ and `(g1) = ♥. It is pictured as follows:

♣

g0

♥

g1 ♣

g2

A

B

D

C

AE

Definition 3.2 (Graph morphism). A graph morphism µ from the graphG = (N , `, E)

to the graph G′ = (N ′, `′, E ′) is a function from N to N ′ such that:

— for all n ∈ N , `′(µ(n)) = `(n);

— for all n,m ∈ N and e ∈ ΣE , if n
e−→ m ∈ E then µ(n)

e−→ µ(m) ∈ E ′.
A graph morphism µ is said to be injective if µ(n) = µ(m) implies n = m. We make the

following abuse of notation: given some graph morphism µ : G→ G′, and a set E ⊆ EG,

we let µ(E) = {µ(n)
e−→ µ(m) | n e−→ m ∈ E}.

A subgraph G of G′ is a graph such that NG ⊆ NG′ , EG ⊆ EG′ and `G = `G′ |NG . The

graph G is said to be full in G′ whenever it is a subgraph and EG = EG′∩(NG×ΣE×NG).

Given a subgraph G of G′, we denote by 1G,G′ : n ∈ G 7→ n ∈ G′. It is an injective

morphism from G to G′.

Definition 3.3 (Positive pattern and positive matching). A positive pattern B is
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a graph. A positive matching µ of the positive pattern B in the graph G is an injective

graph morphism (written µ : B ↪→ G).

As shown in Section 2, negative conditions on the subgraph to match naturally arise

in NLP. The positive patterns describes what must be present in the image, not what is

absent. Negative conditions fulfill the gap.

Definition 3.4 (Pattern). A pattern is a pair P = 〈B,~ν〉 made of a positive pattern B

and a sequence of injective morphisms ~ν = (ν1 : B ↪→ B1, . . . , νk : B ↪→ Bk) that share

the graph B. The morphisms νi within ~ν are the negative conditions.

In a pattern P = 〈B,~ν〉, the positive pattern B plays a central role. Thus, we use in

the sequel NP for NB , EP for EB and so on. We do as if the pattern were a graph, that

is its positive pattern. The notations should not be ambiguous. The empty sequence is

() and thus, P = (B, ()) denotes a pattern with an empty set of negative conditions.

Definition 3.5 (Matching). Given a pattern P = 〈B,~ν〉 defined as above and a graph

G, a matching from P to G is a positive matching µ : B ↪→ G such that there is no index

1 ≤ i ≤ k, for which there is an injective morphism ξi with ξi ◦ νi = µ :

B

Bi

G

νi

µ

×
ξi

Negative conditions remove “bad matchings”. To see them in action, let us come back

to the graph of Example 3.1 and consider the two matchings µ0, µ1 : B0 ↪→ G0.

♣

b0

♥

b1

A

µ0

♣

g0

♥

g1 ♣

g2

A

B

D

C

AE

µ1

♣

g0

♥

g1 ♣

g2

A

B

D

C

AE

The two morphisms µ0 and µ1 are matchings for the pattern 〈B0, ()〉. Let us consider

now the morphism ν0 : B0 ↪→ B′0 defined by:

♣

b0

♥

b1

A ν0 ♣

b0

♥

b1

A

B

The morphism µ0 is not a matching for the pattern 〈B0, (ν0)〉. Indeed, there is a

morphism ξ0 = [b0 7→ g0, b1 7→ g1] such that ξ0 ◦ ν0 = µ0. Let us consider the case of the

morphism ν1 defined as follows:

♣

b0

♥

b1

A ν1 ♣

b2

♣

b0

♥

b1

AD
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The morphism µ1 is not a matching for the pattern 〈B0, (ν1)〉. Indeed, the morphism

ξ1 = [b0 7→ g2, b1 7→ g1, b2 7→ g0] verifies ξ1 ◦ ν1 = µ1.

To describe one negative condition ν : B ↪→ B′, we use the following convention. We

“show” the graph B′, crossing parts of it that are not in the image of ν(B). For the mor-

phism ν0, we get: ♣

b0

♥

b1

A

B
× . For the negative condition ν1, we have: ♣

b′2

♣

b′0

♥

b′1

AD× .

Let us end the section with the following observation. Given a pattern P = 〈B,~ν〉,
suppose that there is a negative condition νi among ~ν which is an isomorphism. Then,

there is no matchings for P . Indeed, let us suppose a positive matching µ : B ↪→ G. Let

νi : B ↪→ Bi be the incriminated isomorphism, there exists thus a morphism ηi such

that ηi ◦ νi = 1B . Set ξi = µ ◦ ηi. It is injective (as the composition of two injective

morphisms). But ξi ◦νi = µ◦ηi ◦νi = µ◦1B = µ. And thus µ is not a matching. In other

words, as long as there is an isomorphism within negative conditions, there is no more

matchings. Such patterns become dubious and we suppose from now on that negative

conditions are never isomorphisms.

Once the condition on negative conditions is set, we can observe that the identity is a

matching: given a pattern 〈P, ~ν〉, 1 : P ↪→ P is a matching from P to P .

3.2. Graph decomposition

The proper description of actions of a rule on some graph G requires first the definition

of two partitions: one on nodes and the other on edges. They are both relative to the

matching of some pattern P into G.

For technical reasons, we will have to consider the decomposition of some other graphs

(for instance obtained after a subpart of the global transformation). To capture these

cases, we need a more general definition. Let µ be an injective matching µ : P ↪→ H; as

NH ⊂ U , we can see µ as an injective function µ : NP ↪→ U and define the decomposition

of a graph G with respect to µ as follows.

Definition 3.6 (Nodes decomposition: pattern image, crown and context). Let

µ : P ↪→ H a matching from the pattern P into a graph H. Let G a graph (NG, `G, EG).

Nodes of G can be split in a partition of three sets NG = Pµ ⊕Kµ ⊕ Cµ:

— the pattern image is Pµ = µ(NP ) ∩NG;

— the crown contains nodes outside the pattern image which are directly connected to

the pattern image: Kµ = {n ∈ NG \ Pµ | ∃p ∈ Pµ such that n −→ p or p −→ n};
— the context contains nodes not linked to the pattern image: Cµ = NG \ (Pµ ∪ Kµ).

Definition 3.7 (Edges decomposition: pattern edges, crown edges, context

edges and pattern-glued edges). Let µ : P ↪→ H a matching from the pattern P

into a graph H. Let G a graph (NG, `G, EG). Edges of G can be split in a partition of

four sets EG = Pµ ⊕Kµ ⊕ Cµ ⊕Hµ:

— the pattern edges set is Pµ = µ(EP ) ∩ EG;

— the crown edges set contains edges which links a pattern image node to a crown node:

Kµ = {n −→ m ∈ EG | n ∈ Pµ ∧m ∈ Kµ} ∪ {n −→ m ∈ EG | n ∈ Kµ ∧m ∈ Pµ};
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— the context edges set contains edges which connect two nodes that are not in the

pattern image: Cµ = {n −→ m ∈ EG | n /∈ Pµ ∧m /∈ Pµ}.
— the pattern-glued edges set contains edges which are not pattern edges but which

connect two nodes that are in the pattern image: Hµ = {n −→ m ∈ E \ µ(EP ) | n ∈
Pµ ∧m ∈ Pµ}.

In Figure 2, for the particular case where H = G we draw a pattern, a matching of

this pattern in a larger graph as an illustration of the nodes and edges decomposition

(see the legend in the figure).

Pµ: Pattern image

Kµ: Crown node

Cµ: Context node

Pµ: Pattern edge

Kµ: Crown edge

Cµ: Context edge

Hµ: Pattern-glued edge

Fig. 2. A pattern, a matching and its decomposition

3.3. Rules

In our graph rewriting framework, the transformation of the graph is described through

some atomic commands (like in (Echahed, 2008)). Commands definition refer to some

pattern P and pattern nodes NP are used as identifiers. The five kinds of commands are

described below (where a, b ∈ NP , α ∈ ΣN and e ∈ ΣE):

— change label(a, α)

— del edge(a, e, b)

— add edge(a, e, b)

— del node(a)

— shift(a, b)

Their names speak for themselves, however, we will come back to their precise meaning

below.

Definition 3.8 (Rule). A rule R is a pair R = 〈P,~c 〉 of a pattern P and a sequence of

commands ~c. A rule R is said to be node-preserving if it does not contain any del node

command.

Let G a graph, R = 〈P,~c 〉 a rule and µ : P ↪→ G a matching. The application of

the sequence ~c on G is a new graph which is written G ·µ ~c (shortened G · ~c when µ

is clear from the context) and is defined by induction on the length k of ~c. If k = 0,
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G · () = G. If k > 0, let G′ = (N ′, `′, E ′) be the graph obtained by application of the

sequence c1, . . . , ck−1; then we consider each command in turn:

Change label: If µ(a) ∈ N ′, the command ck = change label(a, α) changes the label

of the node µ(a) of the graph G′ and G · ~c = (N ′, `′′, E ′) with `′′ = `′[µ(a) 7→ α]. If

µ(a) 6∈ N ′ then G · ~c = G′.
Delete edge: If µ(a) ∈ N ′, µ(b) ∈ N ′ and µ(a)

e−→ µ(b) ∈ E ′, the command ck =

del edge(a, e, b) deletes the edge from µ(a) to µ(b) labelled with e and G · ~c =

(N ′, `′, E ′′) with E ′′ = E ′ \ {µ(a)
e−→ µ(b)}. Note that, in all other cases (µ(a) 6∈ N ′,

µ(b) 6∈ N ′ or if no edge µ(a)
e−→ µ(b) exists in the graph), then G′ ·del edge(a, e, b) =

G′, which implies G · ~c = G′.
Add edge: If µ(a) ∈ N ′, µ(b) ∈ N ′ and µ(a)

e−→ µ(b) 6∈ E ′, the command ck =

add edge(a, e, b) adds an edge from µ(a) to µ(b) labelled with e and G·~c = (N ′, `′, E ′′)
with E ′′ = E ′ ∪ {µ(a)

e−→ µ(b)}. Note that, in all other cases (for instance if such an

edge already exists in the graph), then G′ · add edge(a, e, b) = G′ which implies

G · ~c = G′.
Delete node: If µ(a) ∈ N ′, the command ck = del node(a) removes the node µ(a)

of the graph G′; G · ~c = (N ′′, `′′, E ′′) with N ′′ = N ′ \ {µ(a)}, `′′ = `′|N ′′ and

E ′′ = E ′ ∩ {N ′′ × ΣE ×N ′′}.
Shift edges: If µ(a) 6∈ N ′ or µ(b) 6∈ N ′, the command ck = shift(a, b) does not change

the graph and G · ~c = G′. Else, µ(a) ∈ N ′ and µ(b) ∈ N ′, the command ck =

shift(a, b) changes in-edges of n = µ(a) starting from the crown to in-edges of

m = µ(b) and all out-edges of n going to the crown to out-edges of m. We consider

the decompositon of nodes of G′: N ′ = Pµ ⊕ Kµ ⊕ Cµ. Formally, G · ~c = (N ′, `′, E ′′)
with the set E ′′ defined by, for all e ∈ ΣE :

— for all p ∈ Kµ, m
e−→ p ∈ E ′′ iff m

e−→ p ∈ E ′ or n
e−→ p ∈ E ′;

— for all p ∈ Kµ, p
e−→ m ∈ E ′′ iff p

e−→ m ∈ E ′ or p
e−→ n ∈ E ′;

— for all p, q such that {p, q} ∩ {n,m} = ∅, p e−→ q ∈ E ′′ iff p
e−→ q ∈ E ′.

The commands change label, del edge and add edge are called local commands:

they modify only the edges and the nodes described in the image of the pattern. The

commands del node and shift are non-local, they can modify edges outside the pattern:

pattern-glued edges and crown edges.

In a sequence of commands, there may be some commands without any effects, what-

ever is the graph to which the sequence is applied. First, if a command is a del node(a),

all following commands refering to a has no effect. Second, if some sequence of commands

contains two change label commands which refer to the same node, the first one can be

removed without changing the effect of the whole sequence. Third, if a sequence contains

two commands add edge or del edge referring to the same triplet (a, e, b), the first one

can be removed without changing the behavior of the rule. The definition below describes

sequences without these spurious commands.

Definition 3.9 (Consistent sequence of commands). A sequence of commands

c1, . . . , cn is called consistent if it verifies the following conditions:

— if ci = del node(a) then for all j such that i < j ≤ n the command cj does not refer

to the node a;
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— if ci = change label(a, α) then for all j such that i < j ≤ n the command cj 6=
change label(a, α′);

— if ci = del edge(p, e, q) or ci = add edge(p, e, q) then for all j such that i < j ≤ n

the command cj 6= del edge(p, e, q) and cj 6= add edge(p, e, q).

Lemma 3.1. Any non consistent sequence ~c of commands can be replaced by a shorter

consistent sequence ~c′ which as the same effect: G→〈P,~c 〉 G′ iff G→〈P,~c′ 〉 G
′

Proof. From a non consistent sequence ~c, we built a new sequence with the procedure:

— if 1 ≤ i < j ≤ n, ci = del node(a) and cj refers to a, the command cj is removed

from the sequence;

— if 1 ≤ i < j ≤ n, ci = change label(a, α) and cj = change label(a, α′), the

command ci is removed from the sequence;

— if 1 ≤ i < j ≤ n, ci = del edge(p, e, q) or ci = add edge(p, e, q) and cj = del edge(p, e, q)

or cj = add edge(p, e, q), the command ci is removed from the sequence.

It is easy to verify that each step of the procedure build a strictly smaller sequence with

the same effet. The procedure can be iterated until a consistent sequence ~c′ is reached.

3.4. Graph Rewriting System

Definition 3.10 (Rewrite step). Let G a graph, R = 〈P,~c 〉 a rule and µ : P ↪→ G a

matching. Let G′ = G ·µ ~c, then we say that G rewrites to G′ with respect to the rule R

and the matching µ. We write it G→R,µ G
′ or G→R G

′ or even simply G→ G′.

We will also use the usual notation →∗ for the transitive and reflexive closure of the

relation →. Given some GRS G, a graph G is a normal form with respect to G if there

is no H such that G→G H. Finally, if H is a normal form such that G→∗ H, we write

G→! H.

Let us recall that the identity is always a matching. Thus, one may apply a rule

R = 〈P,~c〉 on itself. That is 1P : P ↪→ P is a matching, and thus we can compute P ·1P ~c.
This is the auto-application of a rule, and we will shorten the notation to P · ~c in the

sequel.

Definition 3.11 (Graph Rewriting System). A Graph Rewriting System G is a finite

set of rules.

Definition 3.12. A GRS G induces a relation JGK from graphs to graphs defined as

follows:

(G,H) ∈ JGK⇐⇒ G→! H

Conversely, a relation R on graphs is computed by a GRS G iff JGK = R.

In our application, the translation of the syntax to semantics splits into several inde-

pendent levels of transformation driven by linguistic consideration (such as translation

of passive forms to active ones, computation of the deep subject of infinites). Rules are

then grouped in subsets called modules and modules apply sequentially; each module

being used as a graph rewriting system on the outputs of the previous module.
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4. Big step semantics

The previous section described semantics of rules step by step. To assert global properties

of rewriting like termination, we need a big step semantics to observe the full effect of

some rule rather than the effect of individual commands.

4.1. Rules normalization

Recall the decomposition of nodes and edges as given by Definitions 3.6 and 3.7. Node

deletion modifies nodes in Pµ, edges in µ(EP ), Kµ and Hµ. Shifting modifies edges

in the crown Kµ. Edge addition and edge deletion modify edges in the pattern im-

age µ(EP ) or in the pattern-glued edges Hµ and renaming modify Pµ. Apart from the

node deletion command which has a more global scope, the three sets {change label},
{add edge, del edge} and {shift} operate respectively on the three distinct sets Pµ,

µ(EP ) ⊕ Hµ and Kµ. Thus, if one supposes that there is no node deletion, commands

may be separated according to the three sets above, and the global transformation can

be computed independently.

Even with the consistent sequences (Def. 3.9), a command like change label, add edge

or del edge may be ineffective. Consider, for instance, the graph G = g : α h : α E . Given

the pattern P = b : α , it may be applied on G via the morphism µg : b 7→ g or via the

morphism µh : b 7→ h. In the first case, the command c = del edge(b, E, b) does not

modify G. Whereas, in the second case, the command c removes the loop in Hµh within

G. A similar remark holds for the command add edge. Uniform rules avoid such an

unpredictable behavior.

Definition 4.1 (Uniform rule). We say that a rule 〈〈B,~ν〉,~c〉 is uniform if:

1 if there is an index i such that ci = change label(p, α), then `B(p) 6= α;

2 if there is an index i such that ci = add edge(p, e, q), then 1
B,B+{p e−→q} ∈ ~ν;

3 if there is an index i such that ci = del edge(p, e, q), then p
e−→ q ∈ B.

Lemma 4.1. Given an uniform rule R = 〈P,~c 〉. If G→R,µ G
′ then Hµ is left unchanged

in G′.

Proof. By induction on the length of the sequence ~c.

The non-predictable behavior of add edge and del edge commands definitely compro-

mises a static analysis of GRSs, and, in particular their termination property. In uniform

rules, add edge and del edge commands have a predictable behavior. Actually, sticking

to uniform rules is not restrictive: we show that any set of rules can be replaced by an

equivalent set of uniform rules.

Lemma 4.2 (Uniformisation). Let R a rule, there is a finite set of uniform rules S(R)

such that G→R G
′ iff G→S(R) G

′.

The idea of the proof is to replace a rule with an add edge or del edge command

which may be ineffective by a couple of rules: one for the effective case, one for the other

possibility. Ineffective change label commands are simply removed.
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Let us introduce some notations. For a rule R = 〈P,~c 〉, if it is not uniform we write

γ(R) the index of the first command that makes it non uniform: i.e the smallest index i

such that 〈P, (c1, . . . , ci−1) 〉 is uniform but 〈P, (c1, . . . , ci) 〉 is not. For a rule R = 〈P,~c 〉,
we define δ(R) to be 0 if R is uniform and |~c | − γ(R) else. Note that in any case,

δ(R) ≤ |~c |. We write ~c−j = (c1, . . . , cj−1, cj+1, . . . , c|~c |).

Proof. We will give below a procedure which construct from a non-uniform rule R a

set R of at most 2 rules such that:

— for all R′ ∈ R, we have δ(R′) < δ(R)

— for any G, JG ∪ {R}K = JG ∪ RK.

This procedure can be iterated to replace in a GRS any rule R = 〈P,~c 〉 by a subset of

at most 2|~c | uniform rules without changing the relation induced.

Let us now describe the procedure. Let R = 〈P,~c 〉 be a rule such that δ(R) > 0. We

consider the command cj with j = γ(R) (i.e. the first non-uniform command). We are

necessarily in one of the 3 following cases:

1 cj = change label(p, α) and `B(p) = α, let R = {R1} with R1 = 〈P,~c−j 〉
2 cj = add edge(p, e, q), and 1

B,B+{p e−→q} /∈ ~ν, let R = {R1, R2} with

(a)R1 = 〈〈B ∪ {p e−→ q}, ~ν〉,~c−j 〉
(b)R2 = 〈〈B,~ν ∪ 1

B,B+{p e−→q}〉,~c 〉

3 cj = del edge(p, e, q), and p
e−→ q /∈ B, let R = {R1, R2} with

(a)R1 = 〈〈B,~ν ∪ 1
B,B+{p e−→q}〉,~c−j 〉

(b)R2 = 〈〈B ∪ {p e−→ q}, ~ν〉,~c 〉
In cases 2(b) and 3(b), the pattern was changed in such a way that γ(R2) > γ(R) and as

the length of the sequence of commands is the same δ(R2) < δ(R). In the 3 other cases,

the sequence was not changed until index j − 1, and so γ(R1) ≥ γ(R); but the length

strictly decreases and we can conclude δ(R1) < δ(R).

4.2. Big step modification

To describe the effect of a sequence of shift commands, we define a global function Φ

which sums up in a single step the composition of the commands in the sequence.

Definition 4.2. Let P a pattern and a sequence ~c of commands. We define inductively

the big step shift-edges function Φ~c : NP → NP :

— Φ∅ = 1

— Φ~c,shift(m,n) = 1[m 7→ n] ◦ Φ~c
— Φ~c,c = Φ~c if c is not a shift command

Using definition 3.6, the following lemma describes node decomposition with respect

to a rule application:

Lemma 4.3 (Graph node decomposition). Given a graph G and a rule R = 〈P,~c 〉
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and a rule application G→R,µ G
′. Then, NG = µ(NP)⊕Kµ⊕Cµ and NG′ = µ(NP·1~c)⊕

Kµ ⊕ Cµ. If the rule is node preserving, then NG = NG′ = Pµ ⊕Kµ ⊕ Cµ.

Definition 4.3 (Crown image). Let R = 〈P,~c 〉 a node-preserving rule and G→R,µ G
′

a rule application. Let NG′ = Pµ⊕Kµ⊕Cµ the decomposition given by Lemma 4.3. The

crown image is the set of edges of G′ which links the pattern nodes to the crown nodes:

K′µ = {n −→ m ∈ EG′ | n ∈ Pµ ∧m ∈ Kµ} ∪ {n −→ m ∈ EG′ | n ∈ Kµ ∧m ∈ Pµ}

Lemma 4.4. Let R = 〈P,~c 〉 a node-preserving rule, G →R,µ G
′ a rule application and

K′µ the crown image. Let n ∈ Pµ and p ∈ Kµ
— n

e−→ p ∈ K′µ iff there is a node n′ in Φ−1
~c (n) such that n′

e−→ p ∈ Kµ.

— p
e−→ n ∈ K′µ iff there is a node n′ in Φ−1

~c (n) such that p
e−→ n′ ∈ Kµ.

Proof. By induction on the length of the sequence of commands ~c.

Corollary 4.1. If a rule does not contain any shift command, Kµ = K′µ.

Lemma 4.5. Given the notations of the preceding lemma, given an edge label e ∈ ΣE ,

we have |K′µ|e ≤ |Kµ|e.

Proof. The preceding lemma induces a function : T : n
e−→ p ∈ K′µ 7→ n′

e−→ p ∈ Kµ
and p

e−→ n ∈ K′µ 7→ p
e−→ n′ ∈ Kµ. Let us verify that the function T is injective which

is a sufficient condition to prove the lemma.

Suppose that n1
e−→ p1 6= n2

e−→ p2 ∈ K′µ (the case p1
e−→ n1 6= p2

e−→ n2 is similar,

the cases p1
e−→ n1 6= n2

e−→ p2 are trivial since n1 and p2 are not in the same set). Let

T (n1
e−→ p1) = n′1

e−→ p1 and T (n2
e−→ p2) = n′2

e−→ p2. The inequality p1
e−→ n1 6=

n2
e−→ p2 means that either p1 6= p2 or that n1 6= n2. If p1 6= p2, trivially n′1

e−→ p1 6=
n′2

e−→ p2. If n1 6= n2, then Φ−1
~c (n1) ∩ Φ−1

~c (n2) = ∅. Thus n′1 ∈ Φ−1
~c (n1) is different to

n′2 ∈ Φ−1
~c (n2).

With the definition above, we can state how the graph decomposition is modified by

a rule application.

Theorem 4.1 (Big step semantics). Given R = 〈P,~c 〉 a node-preserving and uniform

rule and a rule application G→R,µ G
′. Let K′µ the crown image and EG = µ(EP )⊕Kµ⊕

Cµ⊕Hµ the decomposition of EG with respect to µ (Definition 3.7). Then, with P ′ = P ·1~c,
edges of G′ can be described as follows: EG′ = µ(EP ′)⊕K′µ ⊕ Cµ ⊕Hµ.

With the previous theorem, we have completely described a rewriting step when no

node deletion is involved. The theorem could be generalized to node deletion, but at the

price of clarity. In any case the extra-generality is not needed in the following.

The following lemma states that a rule with some node deletions modifies at most

a linear number (with respect to the number of nodes in the graph) of edges. Given a

rewriting step G→R,µ G
′, we can consider a less fine-grained decomposition of edges of

G into EG = Cµ ⊕ Qµ where, of course, Qµ = µ(EP ) ⊕ Kµ ⊕ Hµ. By definition of the

context, edges in Cµ are unchanged during the reduction and edges of G′ can also be

split in two sets: EG′ = Cµ ⊕Q′µ.
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Lemma 4.6 (Linear modification). Given a GRS G, there is a constant C > 0 such

that, for any rewriting step G→R,µ G
′ the two canonical corresponding edge decompo-

sitions EG = Cµ ⊕Qµ and EG′ = Cµ ⊕Q′µ satisfy:

|Qµ| ≤ C × (|G|+ 1) and |Q′µ| ≤ C × (|G|+ 1)

Proof. Let C = max{2 × |P |2 × |ΣE | | 〈P,~c 〉 ∈ G}. Both in G and G′, edges that

are not in the context are either between two pattern nodes or between a pattern node

and a crown node. The total number of edges of the first kind (either pattern edges or

glued-pattern edges) is bounded by |P |2 × |ΣE |. For each pattern node, the number of

edges which connect this node to some non-pattern node is bounded by 2 × |G| × |ΣE |
and so the total number of edges which link some pattern node to some non-pattern node

is bounded by 2 × |G| × |ΣE | × |P |. Putting everything together, |Qµ| ≤ C × (|G| + 1)

and |Q′µ| ≤ C × (|G|+ 1).

5. Termination

We recall that a GRS is said to be (strongly) terminating whenever there is no infinite

sequence G1 → G2 → · · · . Actually, for non-size increasing GRS as presented above, we

have immediately the decidability of non-uniform termination. That is, given some GRS

G and some graph G, one may decide whether there is an infinite sequence G1 → G2 →
G3 → · · · . Indeed, one may observe that for such sequence, for all i ∈ N, |Gi| ≤ |G|. Thus,

the Gi’s range in the finite set G≤|G| of graphs of size less or equal to |G|. Consequently,

either the system terminates or there is some j ≤ |G≤|G|| and some k ≤ j such that

Gj = Gk. To conclude, to decide non-uniform termination, it is sufficient to compute all

the (finitely many) possibilities of rewriting G in less than |G≤|G|| steps and to verify

the existence of such a j and k above. Finally, since |G≤|G|| ≤ 2O(|G|2), the procedure as

described above takes exponential time.

Uniform termination— given a GRS, is it terminating on all inputs?— is undecid-

able (Plump, 1998). For the particular case of non-size increasing graph rewriting, the

problem remains open.

There is a need to define some termination method pertaining to non-size increasing

GRS. Compared to standard work in termination (Plump, 1995; Godard et al., 2002),

there are two difficulties: first, our graphs may be cyclic, thus forbidding methods de-

veloped for DAGs such as term-graphs. Second, using term rewriting terminology, our

method should operate for some non-simplifying GRS, that is GRS for which the out-

put may be “bigger” than the input. Indeed, the NLP programmer sometimes wants to

compute some new relations, so that the input graph is a strict subgraph of the resulting

graph.

5.1. Termination by weight analysis

In the context of term-rewriting systems, the use of weights is very common to prove

termination. There are many examples of such orderings, Knuth-Bendix Ordering (Knuth
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and Bendix, 1970) to cite one of them. We recall that all graphs we consider are defined

relatively to two signatures ΣE of edge labels and ΣN of node labels.

Definition 5.1 (Edge weight, node weight). An edge weight is a mapping w : ΣE →
Z. Given some subset E of edges of G, the weight of E is w(E) =

∑
n

e−→m∈E w(e). The

edge weight of a graph G is w(G) = w(EG). A node weight is a mapping η : ΣN → Z.

For a graph G = (NG, `G, EG), we define η(G) =
∑
n∈NG η(`G(n)).

Let us make some observations. Let |G|e denote the number of edges in G which have

the label e, then w(G) =
∑
e∈ΣE

w(e)×|G|e. Second, for a pattern matching µ : P ↪→ G,

w(µ(P )) = w(P ).

The weight of a graph may be negative. This is not standard, but it is useful here to

cope with non-simplifying rules, that is rules which add new edges. Since a graph G has

at most |ΣE | × |G|2 edges, the following lemma is immediate.

Lemma 5.1. Given an edge weight w and a node weight η, let Kw = maxe∈ΣE (|w(e)|),
KE = |ΣE | ×Kw, Kη = maxα∈ΣN (|η(α)|), then

(a) for each subset of edges E ⊂ EG of some graph G, we have w(E) ≤ Kw × |E|.
(b) for each graph G, we have −KE × |G|2 ≤ w(G) ≤ KE × |G|2;

(c) for each graph G, we have |η(G)| ≤ Kη × |G|.

Definition 5.2 (Weight compatibility). A weight ω is said to be compatible with a

rule R = 〈P,~c〉 whenever ~c contains a node deletion command or when ~c preserves nodes

and the three following conditions hold:

1 R is uniform,

2 ω(P · ~c ) < ω(P ),

3 for all e ∈ ΣE such that w(e) < 0, for all n ∈ Φ~c(NP ), let Mn = Φ−1
~c (n); then for

all α ∈ ΣN , for all but possibly one element q in Mn, the set of negative condition

contains α

m

`P (q)

q

e× ∈ ~ν and for all α ∈ ΣN , for all but possibly one element p in Mn,

the set of negative conditions contains α

m

`P (q)

q

e× ∈ ~ν.

A weight is said to be compatible with a GRS G when it is compatible with all its

rules. In that case, we say that G has a compatible weight. A weighted GRS is a pair

(G, w) of a GRS and a compatible weight.

Hypothesis (1) will serve to manage glued edges in the pattern images, Hypothesis

(2) will serve edges in the pattern image and Hypothesis (3) for the crown edges. One

may note that when there is no shift commands in the rule, the Hypothesis (3) holds

whatever ω is. Indeed, in that case, Φ is the identity function and all the sets Mn are

singletons.

Lemma 5.2 (weight context closure). Let (G, w) be a weighted GRS. Suppose that

G→ G′ is a rewrite step of G, either |G| > |G′| or |G| = |G′| and w(G) > w(G′).

Proof. The property holds for the pattern, we prove that it is close by context. If

the rule applied on G contains a del node command, then, |G| > |G′| and the result
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holds. We suppose now that the rule contains no del node command. Then |G| = |G′|.
We prove that ω(G) > ω(G′). By Definition 3.7, EG = Pµ ⊕ Kµ ⊕ Cµ ⊕ Hµ. Since the

rule is uniform (Hyp. (1)), by Theorem 4.1, we can state that edges of G′ are EG′ =

µ(P ·1 ~c ) ⊕ K′µ ⊕ Cµ ⊕ Hµ. As ω(P · ~c ) < ω(P ) (Hyp. (2) in the definition), we only

have to prove that the weight of the crown edges decrease: w(K′µ) ≤ w(Kµ). Since

w(K′µ) =
∑
e∈ΣE

ω(e)× |K′µ|e and w(Kµ) =
∑
e∈ΣE

ω(e)× |Kµ|e, it is enough to prove

that, for each e ∈ ΣE , that ω(e)×|K′µ|e ≤ ω(e)×|Kµ|e. For a label e such that ω(e) ≥ 0,

this follows from Lemma 4.5. Now let e such that ω(e) < 0, we show that |K′µ|e = |Kµ|e.
Ad absurdum, suppose |K′µ|e < |Kµ|e, this implies that there are two edges in Kµ with

the same image in K′µ. Suppose that these two edges are oriented from crown nodes to

pattern nodes (the other case is similar): m
e−→ p ∈ Kµ and m

e−→ q ∈ Kµ such that

r = Φ(p) = Φ(q). But this is not possible since either α

m

`P (p)

p

e× ∈ ~ν or α

m

`P (q)

q

e× ∈ ~ν

and thus, one of the two edges cannot exist.

Theorem 5.1. For any weighted GRS (G, w), G is strongly terminating.

Proof. Let � be the lexicographic ordering on N×Z, that is (n, v) � (n′, v′) iff n > n′

or n = n′ and v > v′. The ordering � is well-founded on any subset N× I with I a finite

subset of Z. We define ω(G) = (|G|, w(G)). Lemma 5.2 shows that G→ G′ implies that

ω(G) � ω(G′).

Consider a sequence G1 → G2 → · · · . Since the system is non-size increasing, |Gi| ≤
|G1| and consequently KE × |Gi|2 ≤ KE × |G1|2. But, by lemma 5.1(b), −KE × |Gi|2 ≤
w(Gi) ≤ KE ×|Gi|, the weights w(Gi) range actually in the set [−KE ×|G1|2, . . . ,KE ×
|G1|2]. Then, (ω(Gi))i is a decreasing sequence on N × [−KE × |G1|2, . . . ,KE × |G1|2],

thus finite.

Condition (3) of Definition 5.2 is necessary. Here is a counter-example of a non-

terminating system with a compatible weight up to this condition.

Example 5.1. Consider the two positive patterns:

Q1 = 0:e 1:e

A

B

~c1 = [del edge(0, A, 1); shift(0, 1)]

Q2 = 3:e 4:e5:e

C

B

~c2 = [add edge(3, A, 4); add edge(5, C, 3)]

We define the GRS defined by the rules R1 = 〈(Q1, ()), ~c1 〉 and R2 = 〈(Q2, ()), ~c2 〉.
Set w(A) = w(B) = 1 and w(C) = −2. Then, one may observe that w(Q1 ·1 ~c1 ) = 1 <

2 = w(Q1) and w(Q2 · ~c2) = −2 < −1 = w(Q2). However, there is an infinite sequence

G1 →R1 G2 →R2 G1 →R1 G2 → · · · with G1 and G2 being:
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0:e 1:e 2:e
A

B

C

C
0:e 1:e 2:e

B

C

R2
�
R1

G1 G2

5.2. Termination by lexicographic weight

In our experiments, in most cases, the weight analysis of the preceding section was

sufficient. The main counter-example is however systems composed of rules as given in

Section 2.4. In a first step, we prove that such systems are strongly terminating but

have no compatible weight. In a second step, we provide a conciliable extension of this

termination proof method.

With a little abstraction, the linguistic example of Section 2.4 about long distance

dependencies looks like Rnl:

Rnl =

b0:P

b1:X b2:X

O

O

A
×

b′0:X b′1:X
O

b′2:X

M

A
×

add edge(b0, A, b
′
2)

For k ∈ N, let us consider the two graphs Gk (on the left) and G′k (on the right):

p0:P

p1:X q0:X

O

O
qk:X p2:X

O

p3:X

M

p0:P

p1:X q0:X

O

O
qk:X p2:X

O

p3:X

M

A

Let us suppose that a GRS G implements the graph rewriting form Gk to G′k. It is

clear that the shortest derivation Gk → H1 → . . .→ Hdk = G′k has length dk ≥ Ω(k).

Let us observe that it is impossible to find a weight compatible with all rules of G.

Ad absurdum, suppose that w is such a weight. Then, as there is no node deletion,

by Lemma 5.2, for all k > 0, w(G′k) ≤ w(Gk) − dk. Since w(G′k) − w(Gk) = w(A),

dk ≤ −w(A). This means that the derivation height is bounded by a constant and this

is contradictory with dk ≥ Ω(k).

In Figure 3, we propose a GRS Gnl with 4 rules which implements the non-local rule

Rnl. With this GRS, we have: Gk →Init→k
Rec→Stop→k+1

Clean G
′
k. To prove termination of

this GRS, we have to use the notion of contextual weight defined below.

Definition 5.3 (Contextual weight). An edge contextual weight is a map ω : ΣN ×
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Init Rec

b0:P

b1:X

O

A ×

E
×

change label(b0, P�)

add edge(b0, E, b1)E×

E×
b0:P�

b1:X b2:X

E

O

A ×

E
×

add edge(b0, E, b2)

Stop Clean

b0:P�

b1:X b2:X

E

M

A ×

E
×

add edge(b0, A, b2)

change label(b0, P )E×

E×
b0:P

b1:X

E del edge(b0, E, b1)

Fig. 3. Local implementation of the non-local rule

ΣE ×ΣN → Z. As for weights, for some graph G = (N , `, E) it extends to any set E ⊆ E
by: ω(E) =

∑
n

e−→m∈E ω(`(n), e, `(m)). And the weight of a graph is ω(G) = ω(E).

A contextual weight is a pair π = (ω, η) with ω an edge contextual weight and η a node

weight. We define π(G) = ω(G) + η(G).

An edge contextual weight is called (α,α′)-decreasing if

∀e ∈ ΣE ,∀β ∈ ΣN , ω(α, e, β) ≥ ω(α′, e, β) and

ω(β, e, α) ≥ ω(β, e, α′)

We say that a rule R is label-compatible with a context weight ω if ω is (α, α′)-

decreasing whenever R contains a rule change label(α, α′).

Lemma 5.3 (Contextual closure). Given a contextual weight π = (ω, η), a rule

R = 〈P,~c 〉 which is (a) uniform, (b) contains no shift and (c) is label-compatible with

ω, consider a rule application G→R G
′. Then π(P ) > π(P ′) implies π(G) > π(G′) where

P ′ = P ·1 ~c. If π(P ) ≥ π(P ′), then π(G) ≥ π(G′).

Proof. We do the proof for the strict inequality, the other one is analogous. To stress

that the node labeling functions, ` in G and `′ in G′, may differ, we write ω`(E) =∑
n

e−→m∈E ω(`(n), e, `(m)) for E in G and ω`′(E) =
∑
n

e−→m∈E ω(`′(n), e, `′(m)) for E

in G′.

We recall that EG = Pµ ⊕Kµ ⊕ Cµ ⊕Hµ and EG′ = P ′µ ⊕K′µ ⊕ C′µ ⊕H′µ.

Since R contains no shift Kµ = K′µ by Corollary 4.1. Since R is w-compatible,

ω`(Kµ) =
∑

n
e−→m∈Kµ

ω(`(n), e, `(m)) ≥
∑

n
e−→m∈K′µ

ω(`′(n), e, `′(m)) = ω`′(K′µ) (1)
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Since R is uniform, by Lemma 4.1, Hµ = H′µ; again, by label-compatibility:

ω`(Hµ) ≥ ω`′(H′µ) (2)

Now,

π(G) = π(P ) + ω`(Kµ) + ω`(Cµ) + ω`(Hµ) + η(Kµ) + η(Cµ)

> π(P ′) + ω`(Kµ) + ω`(Cµ) + ω`(Hµ) + η(Kµ) + η(Cµ) by hypothesis

> π(P ′) + ω`′(K′µ) + ω`(Cµ) + ω`′(H′µ) + η(Kµ) + η(Cµ) by (1) and (2)

> π(G′)

where the last inequality is due to the fact that the labeling functions ` and `′ are equal

on Kµ and Cµ.

Definition 5.4 (lexicographical weight). Given an edge weight w0 : ΣE → Z, given

k contextual weights π1 = (ω1, η1), . . . , πk = (ωk, ηk) and a rule R = 〈P,~c 〉, we write

P ′ = P ·1 ~c. We say that R is compatible with (w0, π1, . . . , πk) iff: either ~c contains a

del node command or R is a node-preserving rule such that:

1 R is uniform and

2 either

(i) w0(P ′) < w0(P ) and

(ii) for all e ∈ ΣE such that w(e) < 0, for all n ∈ Φ~c(NP ), let Mn = Φ−1
~c (n); then

for all but possibly one element q in Mn, the set of negative condition contains

α

m

`P (q)

q

e× ∈ ~ν and for all but possibly one element p in Mn, the set of negative

conditions contains α

m

`P (q)

q

e× ∈ ~ν.

3 or ∃j ≤ k such that

(i) w0(P ′) = w0(P ) and

(ii) ∀i < j, πi(P
′) = πi(P ) and

(iii) πj(P
′) < πj(P ) and

(iv) ∀i ≤ j, R is label-compatible with wi and

(v) ~c does not contain any shift commands.

When a weight w0 and k contextual weights π1, . . . , πk are compatible with all the

rules of some GRS G, we say that G is lexicographically weighted by (w0, π1, . . . , πk).

Observe that Definition 5.2 corresponds to the current definition with k = 0. Clauses (1)

and (2.a) of Definition 5.4 play the role of clauses (1) and (2) in Definition 5.2.

Example 5.2. Let us come back to Figure 3, we define w0 = 0ΣE [A 7→ −1], and

ω = 0ΣN×ΣE×ΣN [(P,E,X) 7→ 1, (P�, E,X) 7→ −1]. Consider the contextual weight

π = (ω,0ΣN ).

Rule Stop decreases by (2.a); rules Init and Rec decrease by (2.b): there is one more

edge labeled E starting from P� and rule Clean decrease by (2.b): one edge labeled E

starting from P disappears.
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Theorem 5.2. Whenever a program G is lexicographically weighted by (w0, π1, . . . , πk),

it is strongly terminating.

Proof. Given 1 ≤ i ≤ k, let πi = (ωi, ηi), define

Kωi = max
(α,e,β)∈ΣN×ΣE×ΣN

|ωi(α, e, β)|

Kηi = max
α∈ΣN

|ηi(α)|

Kπi = |ΣE | ×Kωi +Kηi

Then, adapting Lemma 5.1(b) to the present context, we can state that |ωi(G)| ≤ Kωi ×
|ΣE | × |G|2. With Lemma 5.1(c), we have |ηi(G)| ≤ Kηi × |G| and finally

|πi(G)| ≤ Kωi × |ΣE | × |G|
2

+Kηi × |G| ≤ Kπi × |G|
2

Let K0 = maxi∈[1,k](Kπi). Finally, let KE be the constant as given by Lemma 5.1 for

w0, we define K = max(K0,KE). Then, for all i ≤ k, we have:

|πi(G)| ≤ K × |G|2 (3)

|w0(G)| ≤ K × |G|2 (4)

Consider a sequence G1 → G2 → · · · , let I = {1, 2, . . .} be the set of indices of this

sequence. Since for all n ∈ I, |Gn| ≤ |G1|, due to Equations (3) and (4), any element of

the sequence (|Gn|, w0(Gn), π1(Gn), . . . , πk(Gn))n∈I is ranging in L = [0, |G1|]× [−K ×
|G1|2,K × |G1|2]k+1. On the set L, the lexicographic ordering is well-founded. Thus, to

prove the finiteness of the sequence G1 → G2 → · · · , it is sufficient to prove that the se-

quence (|Gn|, w0(Gn), π1(Gn), . . . , πk(Gn))n∈I is strictly decreasing for the lexicographic

ordering.

Consider a step G→R,µ G
′ of the sequence. The rule R is compatible with the weights,

so that we work by case on Definition 5.4. The Lemma 5.2 deals with case (1) and case

(2.a) of the definition. It remains to look at case (2.b). So, the commands are neither node

deletion nor shifts. Let edges EG = µ(EP )⊕Kµ⊕Cµ⊕Hµ and EG′ = µ(E ′P )⊕K′µ⊕Cµ⊕Hµ.

Since there is no shift commands (Hyp. (2.b.v)), Kµ = K′µ, by Corollary 4.1. Since

the rule is uniform, Hµ = H′µ (by Lemma 4.1). Thus, w0(Gi) = w0(Kµ) + w0(Cµ) +

w0(Hµ) + w0(µ(P )) = w0(Kµ) + w0(Cµ) + w0(H′µ) + w0(µ(P ′)) = w0(Gi+1) where the

second equality is due to Hypothesis (2.b.i).

Now, let us consider j ∈ N given by definition (2.b). If i ≤ j, applying Lemma 5.3

(with Hyp (2.b.ii) and (2.b.iv)), we get πi(G) ≥ πi(G′) . With Hyp (2.b.iii) and (2.b.iv),

the same lemma leads to πj(G) > πj(G
′).

6. Properties of weighted GRS

We consider two properties of weighted GRS. First, we show that we can decide whether

or not a GRS has a compatible weight. Second, we give a precise bound on the length of

derivation of weighted GRS.
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6.1. The synthesis of weights

The problem of the synthesis is the following. Given a GRS G, is there a weight w

compatible with G? The next theorem gives an answer to this question.

Theorem 6.1. Given a GRS G, one may decide whether or not it has a compatible

weight.

The remaining of the section is devoted to the proof of the Theorem. To sum up,

we have to compute a weight that is compatible with all rules. First we can verify that

either the rule preserves node or not. Since this is a syntactical question, it can be checked

within the rules. If a rule is node preserving, we have to check its uniformity. Again, this

is a syntactical problem. The remaining is to find a weight that respects conditions (2)

and (3) for node preserving rules. Let R1, . . . , Rn be the set of node preserving rules.

Without loss of generality, we suppose ΣE = {e1, . . . , ek}. Given some node-preserving

rule R = 〈〈P, ~ν〉,~c 〉, let P ′ = P · ~c, finally let the Equation E(R) on variables x1, . . . , xk
be:

(|P |e1 − |P ′|e1)× x1 + · · ·+ (|P |ek − |P ′|ek)× xk > 0 E(R).

A weight w verifies Hypothesis (2) of Definition 5.2 iff (xi 7→ w(ei))i≤k is a solution to

Equation E(R) for each R. In other words, to get Hypothesis (2), we have to check the

existence of x1, . . . , xk such that W (x1, . . . xk) , E(R1) ∧ E(R2) ∧ · · · ∧ E(Rn).

Hypothesis (3) is verified as follows. Given ei ∈ ΣE , let Hei , ∀R ∈ R1, . . . , Rk : ∀n ∈

NP : ∀α ∈ ΣN : ∀p, q : (Φ~c(p) = Φ~c(q) ∧ p 6= q) ⇒ [( α

m

`P (p)

p

ei× ∈ ~ν ∧ α

m

`P (q)

q

ei× ∈

~ν) ∨ ( α

m

`P (p)

p

ei× ∈ ~ν ∧ α

m

`P (q)

q

ei× ∈ ~ν)] where in the formula, NP refers to the nodes

of the positive pattern of R, ~c to its commands and ν to the negative conditions of its

pattern. As we can see, this formula is actually purely syntactic and its validity can be

checked. The Hypothesis (3) is equivalent to U(x1, . . . , xk) , ∀i ≤ k : xi < 0⇒ Hei .

So, a weight is compatible with R1, . . . , Rn whenever ∃x1, . . . , xk : W (x1, . . . , xk) ∧
U(x1, . . . , xk) is satisfiable. One may observe that this formula is actually defined in

Presburger’s arithmetic. Thus, the existence of a weight is decidable. It is clear that the

proof, although tedious, can be extended to contextual weights. Thus,

Theorem 6.2. Given a GRS G, one may decide whether or not it has a compatible

lexicographic weight.

6.2. The derivation height of weighted GRS

Definition 6.1. Given a strongly terminating GRS G and a graph G, the derivation

height for G, next denoted hG(G), is the length of the longest derivation G → G1 →
· · · → Gk starting from G. The derivation height of G, next denoted hG(n), is defined by:

hG(n) = max{hG(G) | |G| ≤ n}.

The proof of Theorem 5.1 actually suggests a cubic upper bound on derivation height.
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We establish in this section that the exact—both an upper and a lower—bound on

derivation height is quadratic.

Theorem 6.3. Given a weighted GRS (G, w), then the derivation height of G is at most

quadratic. Furthermore, this quadratic bound is a lower bound, that is there is a GRS G
with a compatible weight such that hG(n) ≥ Ω(n2).

Proof. We begin to show the lower bound. Let ΣE = {E}, ΣN = {e}. Consider the

two rules GRS G defined by the two positive patterns:

0:e 1:e
E

2:e

E

The rules are (〈P0, ()〉, [del edge(0, E, 1)]) and (〈Pε, ()〉, [del edge(2, E, 2)]). Then,

since the clique Cn of size n has n2 edges, the derivation height hG(Cn) = n2. The

lower bound follows from the definition.

We prove now the upper bound, that is given a GRS G and a compatible weight w, then

hG(n) ≤ O(n2). Let C be the constant as defined by Lemma 4.6, let K = max(1,Kw)

(we recall that Kw = maxe∈ΣE (|w(e)|)). Finally, let H = max{n | (P, c1, . . . , cn) ∈ G}.
Let A = 2 × K × C × (H + 1) + 1. Let Ω be the ’energy function’ defined on graphs

Ω(G) = w(G) +A× |G|2.

Suppose that G →R,µ G′, we prove that Ω(G) > Ω(G′). First, if there is no node

deletion, then, w(G) > w(G′), |G| = |G′| and the result follows. Suppose now the there is

a node deletion command. From the definition of H and the fact that there is a del node

command, it is clear that

|G′| < |G| ≤ |G′|+H. (5)

From Lemma 4.6, we have the decompositions EG = Cµ ⊕ Qµ and EG′ = Cµ ⊕ Q′µ.

Then w(G) = w(EG) = w(Cµ) + w(Qµ) and w(G′) = w(EG′) = w(Cµ) + w(Q′µ).

w(G′)− w(G) = w(Q′µ)− w(Qµ). (6)

Due to Lemma 4.6, both inequality |Qµ| ≤ C × (|G| + 1) and |Q′µ| ≤ C × (|G| + 1)

hold. According to Lemma 5.1(a), w(Q′µ) ≤ Kw × |Q′µ| ≤ K × C × (|G| + 1) and

w(Qµ) ≤ Kw×|Qµ| ≤ K×C× (|G|+1) and so w(Q′µ)−w(Qµ) ≤ 2×K×C× (|G|+1).

Injecting the inequality in Equation 6, we get:

w(G′)− w(G) ≤ 2×K × C × (|G|+ 1) (7)

≤ 2×K × C × |G′|+ 2×K × C × (H + 1) due to Eq 5 (8)

< 2×A× |G′|+A (9)
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To conclude, if there is a deletion rule,

Ω(G) = w(G) +A× |G|2

≥ w(G) +A× (|G′|+ 1)2 due to Eq 5

≥ w(G′) +A× |G′|2 +A× (2× |G′|+ 1) + w(G)− w(G′)

≥ Ω(G′) + 2×A× |G′|+A+ w(G)− w(G′)

> Ω(G′) due to Eq 9.

Now, for all graph G, due to Lemma 5.1, we have: −K × |ΣE | × |G|2 ≤ w(G) ≤
K × |ΣE | × |G|2 and then (A − K × |ΣE |) × |G|2 ≤ Ω(G) ≤ (A + K × |ΣE |) × |G|2.

Since Ω(G) > Ω(G′) for all G → G′, given some derivation G0 → G1 → · · · → Gk,

we can state that k ≤ Ω(G0) − Ω(Gk). After injection of the inequations above, we

get k ≤ (K × |ΣE | + A) × |G0|2 + (K × |ΣE | − A) × |Gk|2. But, |Gk| ≤ |G0| implies

k ≤ 2×K × |ΣE | × |G0|2 which itself establishes the quadratic bound.

6.3. The derivation height of lexicographically weighted GRS

We prove the following theorem:

Theorem 6.4. If a program G is compatible with the lexicographic weight (w0, π1, . . . , πk),

then its derivation height is at most polynomial. The bound is tight, that is for all k > 0,

there is a GRS whose derivation height is O(nk).

In the proof of the termination of lexicographically weighted programs, we have seen

that any sequence G1 → · · · → Gn is such that (|Gi|, w0(Gi), π1(Gi), . . . , πk(Gi))i∈[1,n]

range in L = [0, |G1|] × [−K × |G1|2,K × |G1|2]k+1. Thus, n ≤ |L| = (|G1| + 1) ×
(2× |G1|2 + 1)k+1 which is a polynomial with respect to |G1|. The upper bound follows.

Contrarily to the previous section, the bound given here is not precise, but sufficient with

respect to the theorem statement.

For the lower bound, we build a graph rewriting system which simulates a k-counters

machine. In the graphs we consider, edges are used to encode a k digits representation in

base n. The starting graph correponds to the representation (n− 1) · (n− 1) · · · (n− 1)︸ ︷︷ ︸
k

and rules are drawn to decrease the given encoding one by one downto 0 · · · 0︸ ︷︷ ︸
k

; this ensures

that the rewriting process uses at least nk steps. All graphs we will consider are built

from the skeleton graph (below) by adding edges going from node x to one of the nodes

{y1, . . . , yn−1} and labeled by an integer between 1 and k.

y1:e y2:e yn−2:e yn−1:e

x:e0

F

L

S S



Non-size increasing Graph Rewriting for Natural Language Processing 29

Such a graph encodes a k digits representation in base n in the following way: the digit

of rank j is the number of edges labelled j in the graph. The skeleton graph corresponds

to the encoding of 0 · · · 0. The graph encoding (n − 1) · · · (n − 1) is obtained by adding

to the skeleton graph the edges (x
`−→ ym) for all 1 ≤ ` ≤ k and 1 ≤ m ≤ n− 1.

This drives us to the definitions below (where F stands for “first”, S for “successor”

and “L” for last). Let ΣE = {1, . . . , k, F, S, L}, let ΣN = {e, e0, . . . , ek−1}. There are

four kinds of rules intended to implement the predecessor operation. That is, in terms

of counters, to transform the graph corresponding to ak · · · al · 0 · · · 0 into ak · · · (al − 1) ·
(n− 1) · · · (n− 1), one applies rules:

Dl, Fl−1, (Sl−1)n−2, Ll−1, Fl−2, (Sl−2)n−2, Ll−2, . . . , F1, (S1)n−2, L1

Dl decreases by one digit l while the further rules update digits 1 . . . (l − 1) from 0 to

n − 1. More precisely, rules Fj , Sj increase by one counter number j and Lj gives hand

to the update of the lower bit.

— For all l such that 1 ≤ l ≤ k, the rule Dl (given below) removes a l-edge provided

there is no edge with a smaller label starting from x. The node label of x is changed

to enforce the construction of the full set of edges with labels 1, . . . , l − 1.

x:e0 y:el

1×

l − 1×
del edge(x, l, y)

change label(x, el−1)

— The F -edge of the pattern ensures that y1 is the first node to receive an l-edge. For

all l such that 1 ≤ l ≤ k − 1, the rule Fl is given by:

x:el y:e

F

l
×

add edge(x, l, y)

— For all l such that 1 ≤ l ≤ k − 1, the rule Sl is given by:

x:el

y:e

y′:e

l

l
×

S add edge(x, l, y′)

— For all l such that 1 ≤ l ≤ k − 1, the rule Ll is given by:

x:el y:e

l

L

change label(x, el−1)

The graph rewriting system is lexicographically weighted by (0, πk, . . . , π1), the con-

textual weights πj being defined by πj = (ωj , ηj) with

— ωj = 0ΣN×ΣE×ΣN [(ej , j, e) 7→ −2, (ej−1, j, e), 7→ 2, . . . , (e0, j, e) 7→ 2];

— ηj = 0ΣE [ej−1 7→ 1].
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The verification of the compatibily of the weights with the graph rewriting system is

given in the appendix.

6.4. A characterization of polynomial time

We have defined in Section 3, Definition 3.12 a notion of semantics, that is which relations

are computed by our notion of rewriting. To evaluate the strength of the lexicographic

order, we propose to describe the set of relations computed by such GRS through (im-

plicit) computational complexity. To make the relation between computations on graphs

and functions on words (as done in complexity theory), we introduce the following notion

of computation. Given an alphabet Σ, a word w = a1, . . . , ak in Σ∗ is encoded as a graph

Gw:

b1:a1 b2:a2 bn−1:an bn:nil
suc suc suc suc

on the vertex labels Σ ∪ {nil}, the latter label serves as an endmarker. The edge label

is suc. It is clear that the function w 7→ Gw is injective, thus, given such a graph G, we

can define G to be the unique (if it exists) word w such that G = Gw. One may observe

that Gw = w for all words in Σ∗.

Consider for a while a GRS G working on the set W = {Gw | w ∈ Σ∗}. Suppose

that (Gw, Gu) ∈ JGK. Due to the non-size increasing property of our notion of rewriting,

the size |u| of u is smaller than the size |w| of w. This notion of computation–though

interesting–restricts to non-size increasing relation. Such relations arise quite usually

in complexity theory. Maybe the most remarkable result comes from Hofmann in the

context of linear logic (Hofmann, 1998) where he describes non-size increasing functions

computable in polynomial time. In some way, with the size restriction, the best we can of-

fer is a characterization of functions computable within linear space. However, a machine

working in linear space may take exponential time, so that a direct simulation would

involve exponential derivation height. Since we have a polynomial derivation length on

GRS with lexicographic weight, there is no hope for such a simulation.

To decouple size issues from time issues, we propose a little bit more liberal notion

of computation, by padding inputs by a polynomial number of blank symbols. Let us

extend the alphabet Σ by an extra blank letter �. Let F be a vertex label. Given some

word w, F [w] denote the unique graph made of one node F pointing to Gw:

b0:F b1:a1 b2:a2 bn−1:an bn:nil
suc suc suc suc suc

Definition 6.2. A function φ : Σ∗ → Σ∗ is computed up to padding by a confluent GRS

G iff there is a polynomial P such that for all words w ∈ Σ∗:

F [Gw·�P (|w|) ]→! Gφ(w).

We state that:
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Theorem 6.5. Functions computed by a polynomial-time Turing Machine are exactly

functions computed up to padding by GRS compatible with a lexicographical weight.

Proof. First, we prove that any function computed (up to padding) by a GRS is com-

putable in polynomial time. So, let us suppose w ∈ Σ∗ has size n. The initial graph F [w]

has size Q(n) = P (n)+n+2 where P is the padding polynomial. Thus, all graphs along a

computation have size bounded by Q(n), that is are polynomially bounded with respect

to the size of the input word w. By Theorem 6.4, we can state that the derivation height

of G on F [w] is bounded by R(P (n) + n+ 2) for some polynomial R.

Since the GRS is supposed to be confluent, to compute the normal form of F [w], it is

sufficient to simulate the rewriting process. Finding a redex in a graph takes polynomial

time (this is the sub-isomorphism problem for some fixed patterns) in the size of the

current graph. The graph transformations take linear time (each command taking linear

time) in the size of the current graph. Now, we conclude: we apply polynomially many

steps with respect to n, each of which takes polynomial time with respect to a the size

of a graph which itself has polynomial size with respect to the input words. Thus, the

process takes polynomial time.

In the other direction, the key idea is to use the GRS of the preceding section as clocks

to simulate the computation of a Turing Machine.

First, without loss of generality, we may suppose that a Turing Machine working in

polynomial time uses only a right-lateral tape. That is, it never goes to the left of its

input (see for instance the book (Jones, 1997)). Consider such a machine M working

in polynomial time for some polynomial P . If the � letter corresponds to the blank

symbol of the Turing Machines, we can suppose that a run of M on the initial tape

wpad = w ·�P (|w|) never reaches the last symbol of wpad. In other words, such a machine

runs in constant space on its initial configuration.

This being said, any step of computation of a Turing Machine M = 〈Q,Σ, q0, F, δ〉 may

be simulated by a graph rule. For instance, consider the transition δ(q, a) = (q′, a′,Right),

that is in state q, if the current letter is an ’a’, rewrite it by a b, go to the right, and

update state to q′. This is expressed by the rules:

c:q

b1:a b2:b

reads

suc

del edge(c, reads, b1)

add edge(c, reads, b2)

change label(c, q′)

change label(b1, a
′).

with b ∈ Σ. With the precaution we took at the beginning on the size of inputs, such

a step by step simulation will eventually output the result of the computation of the

Turing Machine after at most P (|w|) steps.

Moreover, for any node weight being constant on Σ ∪Q, for any edge weight contant

on {reads, suc}, for any edge contextual weight constant on Q × {reads, suc} × Σ, the

weight of the left hand side of these rules equals their right hand side. Moreover, these
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rules do not contain any shift commands. It remains to glue clock rules (which will be

lexicographically ordered) to the preceding ones to get both:

— the termination of the system in time P (|w|) by a lexicographic weight,

— the simulation of the Turing Machine.

7. Conclusion

We have implemented a software —called grew (grew.loria.fr)— based on the Graph

Rewriting definition presented in this article. In (Guillaume and Perrier, 2012), the soft-

ware was used to produce a semantically annotated version of the French Treebank; in

this experiment, the system contains 34 modules and 571 rules and the corpus is con-

stituted of 12 000 sentences of length up to 100 words. This experiment is a large scale

application which shows that the proposed approach can be used in real-size applications.

As said earlier, despite the global non-confluence of the system, we can isolate subsets

of rules that are confluent and use our system of modules to benefit from this confluence

in implementation. In our last experiment, 26 of our 34 modules are confluent, but

confluence proofs are tedious. We leave for further work the study of the local confluence

of terminating GRS and the general study of confluence of Graph Rewriting Systems.
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Appendix A. Proof details

We give here the details of the end of the proof of the theorem 6.4. We have to prove

that the graph rewriting system described in the proof is lexicographically weighted by

(0, πk, . . . , π1), the contextual weights πj being defined by πj = (ωj , ηj) with

— ωj = 0ΣN×ΣE×ΣN [(ej , j, e) 7→ −2, (ej−1, j, e), 7→ 2, . . . , (e0, j, e) 7→ 2];

— ηj = 0ΣE [ej−1 7→ 1].

It is suffisant to prove that each rule is compatible (definition 5.1) with (0, πk, . . . , π1).

No rule contains a del node command and the node weight is 0, so none of the hypothesis

(1) and (2.a) apply. Les us prove that all rules verify hypothesis (2.b). As node weight is

0, (2.b.i) is verified for all rules; as there is no shift commands, (2.b.v) is also verified

for all rules. It remains to check clauses (2.b.ii), (2.b.iii) and (2.b.iv). Let us consider

each rule in turn.

— Rule Dl: the clause (2.b) is verified with j = l. We have to check that πl(Dl) < πl(D
′
l)

and that for i > l, πi(Dl) = πi(D
′
l). The different cases are given in the table below

and so, (2.b.ii) and (2.b.iii) are verified for rule Dl.

(2.b.ii) (2.b.iii)
i > l i = l > 1 i = l = 1

ωi ηi ωi ηi ωi ηi

Dl = x:e0 y:el
0 0 2 0 2 1

D′l = x:el−1 y:e 0 0 0 1 0 1

For the clause (2.b.iv), we have to check that for all i ≥ l > 1, wi is (e0, el−1)-

decreasing. The only case where a crown-edge changes of weight during the operation

change label(e0, el−1) is the case of an edge (e0,m, e) which becomes (el−1,m, e). In

this case, wi(e0,m, e) = 2 and wi(e0,m, e) ≥ wi(el−1,m, e) because 2 is the maximal

weight value.

— Rule Fl: the clause (2.b) is verified with j = l. We have to check that πl(Fl) < πl(F
′
l )

and that for i > l, πi(Fl) = πi(F
′
l ). The different cases are given in the table below

and so, (2.b.ii) and (2.b.iii) are verified for rule Fl.
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(2.b.ii) (2.b.iii)
i > l + 1 i = l + 1 i = l
ωi ηi ωi ηi ωi ηi

Fl = x:el y:e

F

0 0 0 1 0 0

F ′
l = x:el y:e

F

l

0 0 0 1 -2 0

There is no change label in Fl and so (2.b.iv) is necessarily verified.

— Rule Sl: the clause (2.b) is verified with j = l. We have to check that πl(Sl) < πl(S
′
l)

and that for i > l, πi(Sl) = πi(S
′
l). The different cases are given in the table below

and so, (2.b.ii) and (2.b.iii) are verified for rule Sl.

(2.b.ii) (2.b.iii)
i > l + 1 i = l + 1 i = l
ωi ηi ωi ηi ωi ηi

x:el

y:e

y′:e

l

S 0 0 0 1 -2 0

x:el

y:e

y′:e

l

l

S 0 0 0 1 -4 0

There is no change label in Sl and so (2.b.iv) is necessarily verified.

— Rule Ll: the clause (2.b) is verified with j = l+ 1. We have to check that πl+1(Ll) <

πl+1(S′l) and that for i > l + 1, πi(Ll) = πi(S
′
l). The different cases are given in the

table below and so, (2.b.ii) and (2.b.iii) are verified for rule Ll.
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(2.b.ii) (2.b.iii)
i > l + 1 i = l + 1
ωi ηi ωi ηi

x:el y:e

l

L

0 0 0 1

x:el y:e

l

L

0 0 0 0

For the clause (2.b.iv), we have to check that for all i ≥ l + 1, wi is (el, el−1)-

decreasing. The only case where a crown-edge changes of weight during the operation

change label(el, el−1) is the case of an edge (el,m, e) which becomes (el−1,m, e).

Now, if m = i, wi(el,m, e) = 2 = wi(el−1,m, e) and if m 6= i, wi(el,m, e) = 0 =

wi(el−1,m, e).

This achieves to prove the Theorem 6.4.


