15,406 research outputs found

    Constrained Statistical Modelling of Knee Flexion from Multi-Pose Magnetic Resonance Imaging

    Get PDF
    © 1982-2012 IEEE.Reconstruction of the anterior cruciate ligament (ACL) through arthroscopy is one of the most common procedures in orthopaedics. It requires accurate alignment and drilling of the tibial and femoral tunnels through which the ligament graft is attached. Although commercial computer-Assisted navigation systems exist to guide the placement of these tunnels, most of them are limited to a fixed pose without due consideration of dynamic factors involved in different knee flexion angles. This paper presents a new model for intraoperative guidance of arthroscopic ACL reconstruction with reduced error particularly in the ligament attachment area. The method uses 3D preoperative data at different flexion angles to build a subject-specific statistical model of knee pose. To circumvent the problem of limited training samples and ensure physically meaningful pose instantiation, homogeneous transformations between different poses and local-deformation finite element modelling are used to enlarge the training set. Subsequently, an anatomical geodesic flexion analysis is performed to extract the subject-specific flexion characteristics. The advantages of the method were also tested by detailed comparison to standard Principal Component Analysis (PCA), nonlinear PCA without training set enlargement, and other state-of-The-Art articulated joint modelling methods. The method yielded sub-millimetre accuracy, demonstrating its potential clinical value

    A non-rigid registration method for mouse whole body skeleton registration

    Get PDF
    Micro-CT/PET imaging scanner provides a powerful tool to study tumor in small rodents in response to therapy. Accurate image registration is a necessary step to quantify the characteristics of images acquired in longitudinal studies. Small animal registration is challenging because of the very deformable body of the animal often resulting in different postures despite physical restraints. In this paper, we propose a non-rigid registration approach for the automatic registration of mouse whole body skeletons, which is based on our improved 3D shape context non-rigid registration method. The whole body skeleton registration approach has been tested on 21 pairs of mouse CT images with variations of individuals and time-instances. The experimental results demonstrated the stability and accuracy of the proposed method for automatic mouse whole body skeleton registration

    Shape Registration in the Time of Transformers

    Get PDF
    In this paper, we propose a transformer-based procedure for the efficient registration of non-rigid 3D point clouds. The proposed approach is data-driven and adopts for the first time the transformers architecture in the registration task. Our method is general and applies to different settings. Given a fixed template with some desired properties (e.g. skinning weights or other animation cues), we can register raw acquired data to it, thereby transferring all the template properties to the input geometry. Alternatively, given a pair of shapes, our method can register the first onto the second (or vice-versa), obtaining a high-quality dense correspondence between the two. In both contexts, the quality of our results enables us to target real applications such as texture transfer and shape interpolation. Furthermore, we also show that including an estimation of the underlying density of the surface eases the learning process. By exploiting the potential of this architecture, we can train our model requiring only a sparse set of ground truth correspondences (10∼20% of the total points). The proposed model and the analysis that we perform pave the way for future exploration of transformer-based architectures for registration and matching applications. Qualitative and quantitative evaluations demonstrate that our pipeline outperforms state-of-the-art methods for deformable and unordered 3D data registration on different datasets and scenarios

    Root Pose Decomposition Towards Generic Non-rigid 3D Reconstruction with Monocular Videos

    Full text link
    This work focuses on the 3D reconstruction of non-rigid objects based on monocular RGB video sequences. Concretely, we aim at building high-fidelity models for generic object categories and casually captured scenes. To this end, we do not assume known root poses of objects, and do not utilize category-specific templates or dense pose priors. The key idea of our method, Root Pose Decomposition (RPD), is to maintain a per-frame root pose transformation, meanwhile building a dense field with local transformations to rectify the root pose. The optimization of local transformations is performed by point registration to the canonical space. We also adapt RPD to multi-object scenarios with object occlusions and individual differences. As a result, RPD allows non-rigid 3D reconstruction for complicated scenarios containing objects with large deformations, complex motion patterns, occlusions, and scale diversities of different individuals. Such a pipeline potentially scales to diverse sets of objects in the wild. We experimentally show that RPD surpasses state-of-the-art methods on the challenging DAVIS, OVIS, and AMA datasets.Comment: ICCV 2023. Project Page: https://rpd-share.github.i
    corecore