17,629 research outputs found

    Non-parametric sub-pixel local point spread function estimation

    Get PDF
    This work presents an algorithm for the local subpixel estimation of the Point Spread Function (PSF) that models the intrinsic camera blur. For this purpose, the Bernoulli(0:5) random noise calibration pattern introduced in a previous article [1] is used. This leads to a well-posed near-optimal accurate estimation. First the pattern position and its illumination conditions are accurately estimated. This allows for accurate geometric registration and radiometric correction. Once these procedures are performed, the local PSF can be directly computed by inverting a linear system. This system is well-posed and consequently its inversion does not require any regularization or prior model. The PSF estimates reach stringent accuracy levels with a relative error in the order of 2 to 5%

    The non- parametric sub-pixel local point spread function estimation is a well posed problem

    Get PDF
    Most medium to high quality digital cameras (DSLRs) acquire images at a spatial rate which is several times below the ideal Nyquist rate. For this reason only aliased versions of the cameral point-spreadfunction (psf) can be directly observed. Yet, it can be recovered, at a sub-pixel resolution, by a numerical method. Since the acquisition system is only locally stationary, this psf estimation must be local. This paper presents a theoretical study proving that the sub-pixel psf estimation problem is well-posed even with a single well chosen observation. Indeed, theoretical bounds show that a near-optimal accuracy can be achieved with a calibration pattern mimicking a Bernoulli(0.5) random noise. The physical realization of this psf estimation method is demonstrated in many comparative experiments. They use an algorithm estimating accurately the pattern position and its illumination conditions. Once this accurate registration is obtained, the local psf can be directly computed by inverting a well conditioned linear system. The psf estimates reach stringent accuracy levels with a relative error in the order of 2-5%. To the best of our knowledge, such a regularization free and model-free sub-pixel psf estimation scheme is the first of its kind

    Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Get PDF
    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.Comment: 31 pages, 47 figure

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Experimental Quantum Imaging exploiting multi-mode spatial correlation of twin beams

    Full text link
    Properties of quantum states have disclosed new and revolutionary technologies, ranging from quantum information to quantum imaging. This last field is addressed to overcome limits of classical imaging by exploiting specific properties of quantum states of light. One of the most interesting proposed scheme exploits spatial quantum correlations between twin beams for realizing sub-shot-noise imaging of the weak absorbing objects, leading ideally to a noise-free imaging. Here we discuss in detail the experimental realization of this scheme, showing its capability to reach a larger signal to noise ratio with respect to classical imaging methods and, therefore, its interest for future practical applications
    • …
    corecore