15 research outputs found

    Converse results on existence of sum of squares Lyapunov functions

    Get PDF
    Despite the pervasiveness of sum of squares (sos) techniques in Lyapunov analysis of dynamical systems, the converse question of whether sos Lyapunov functions exist whenever polynomial Lyapunov functions exist has remained elusive. In this paper, we first show via an explicit counterexample that if the degree of the polynomial Lyapunov function is fixed, then sos programming can fail to find a valid Lyapunov function even though one exists. On the other hand, if the degree is allowed to increase, we prove that existence of a polynomial Lyapunov function for a homogeneous polynomial vector field implies existence of a polynomial Lyapunov function that is sos and that the negative of its derivative is also sos. The latter result is extended to develop a converse sos Lyapunov theorem for robust stability of switched linear systems

    Interval Predictor Models for Data with Measurement Uncertainty

    Get PDF
    An interval predictor model (IPM) is a computational model that predicts the range of an output variable given input-output data. This paper proposes strategies for constructing IPMs based on semidefinite programming and sum of squares (SOS). The models are optimal in the sense that they yield an interval valued function of minimal spread containing all the observations. Two different scenarios are considered. The first one is applicable to situations where the data is measured precisely whereas the second one is applicable to data subject to known biases and measurement error. In the latter case, the IPMs are designed to fully contain regions in the input-output space where the data is expected to fall. Moreover, we propose a strategy for reducing the computational cost associated with generating IPMs as well as means to simulate them. Numerical examples illustrate the usage and performance of the proposed formulations

    Analysis of the Joint Spectral Radius Via Lyapunov Functions on Path-Complete Graphs

    Get PDF
    We study the problem of approximating the joint spectral radius (JSR) of a finite set of matrices. Our approach is based on the analysis of the underlying switched linear system via inequalities imposed between multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, maximum/minimum-of-quadratics Lyapunov functions. We characterize all path-complete graphs consisting of two nodes on an alphabet of two matrices and compare their performance. For the general case of any set of n x n matrices we propose semidefinite programs of modest size that approximate the JSR within a multiplicative factor of 1/[superscript 4]√n of the true value. We establish a notion of duality among path-complete graphs and a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente

    Control Theory Meets POMDPs: A Hybrid Systems Approach

    Get PDF
    Partially observable Markov decision processes(POMDPs) provide a modeling framework for a variety of sequential decision making under uncertainty scenarios in artificial intelligence (AI). Since the states are not directly observable ina POMDP, decision making has to be performed based on the output of a Bayesian filter (continuous beliefs); hence, making POMDPs intractable to solve and analyze. To overcome the complexity challenge of POMDPs, we apply techniques from control theory. Our contributions are fourfold: (i) We begin by casting the problem of analyzing a POMDP into analyzing the behavior of a discrete-time switched system. Then, (ii) in order to estimate the reachable belief space of a POMDP, i.e., the set of all possible evolutions given an initial belief distribution over the states and a set of actions and observations, we find over-approximations in terms of sub-level sets of Lyapunov-like functions. Furthermore, (iii) in order to verify safety and performance requirements of a given POMDP, we formulate a barrier certificate theorem
    corecore