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ABSTRACT

We study the problem of approximating the joint spectral
radius (JSR) of a finite set of matrices. Our approach is
based on the analysis of the underlying switched linear sys-
tem via inequalities imposed between multiple Lyapunov
functions associated to a labeled directed graph. Inspired
by concepts in automata theory and symbolic dynamics, we
define a class of graphs called path-complete graphs, and
show that any such graph gives rise to a method for proving
stability of the switched system. This enables us to derive
several asymptotically tight hierarchies of semidefinite pro-
gramming relaxations that unify and generalize many exist-
ing techniques such as common quadratic, common sum of
squares, maximum/minimum-of-quadratics Lyapunov func-
tions. We characterize all path-complete graphs consisting
of two nodes on an alphabet of two matrices and compare
their performance. For the general case of any set of n x n
matrices we propose semidefinite programs of modest size
that approximate the JSR within a multiplicative factor of
1/+/n of the true value. We establish a notion of duality
among path-complete graphs and a constructive converse

Lyapunov theorem for maximum/minimum-of-quadratics Lya-

punov functions.

Categories and Subject Descriptors

1.1.2 [Symbolic and algebraic manipulations]: Algo-
rithms—Analysis of algorithms
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1. INTRODUCTION

Given a finite set of matrices A := {A1,..., A}, their
joint spectral radius p(A) is defined as

p(A) = lim  max [Ag,..A0y Ao, M5, (1)
—®oe{l,..., m}k
where the quantity p(A) is independent of the norm used in
(1). The joint spectral radius (JSR) is a natural generaliza-
tion of the spectral radius of a single square matrix and it
characterizes the maximal growth rate that can be obtained
by taking products, of arbitrary length, of all possible per-
mutations of Ai,..., A,,. This concept was introduced by
Rota and Strang [26] in the early 60s and has since been
the subject of extensive research within the engineering and
the mathematics communities alike. Aside from a wealth
of fascinating mathematical questions that arise from the
JSR, the notion emerges in many areas of application such
as stability of switched linear dynamical systems, computa-
tion of the capacity of codes, continuity of wavelet functions,
convergence of consensus algorithms, trackability of graphs,
and many others. See [16] and references therein for a recent
survey of the theory and applications of the JSR.
Motivated by the abundance of applications, there has
been much work on efficient computation of the joint spec-
tral radius; see e.g. [1], [5], [4], [21], and references therein.
Unfortunately, the negative results in the literature certainly
restrict the horizon of possibilities. In [6], Blondel and Tsit-
siklis prove that even when the set A consists of only two
matrices, the question of testing whether p(A) < 1 is un-
decidable. They also show that unless P=NP, one cannot
compute an approximation p of p that satisfies |p — p| < ep,
in a number of steps polynomial in the size of A and € [27]. It
is easy to show that the spectral radius of any finite product
of length k raised to the power of 1/k gives a lower bound on
p [16]. Our focus, however, will be on computing good upper
bounds for p, which requires more elaborate techniques.
There is an attractive connection between the joint spec-
tral radius and the stability properties of an arbitrary switched
linear system; i.e., dynamical systems of the form

Tl = Aor)Th, (2)

where 0 : Z — {1,...,m} is a map from the set of integers to
the set of indices. It is well-known that p < 1 if and only if
system (2) is absolutely asymptotically stable (AAS), that is,
(globally) asymptotically stable for all switching sequences.
Moreover, it is known [18] that absolute asymptotic stability



of (2) is equivalent to absolute asymptotic stability of the
linear difference inclusion

Tri1 € coA Tk, (3)

where coA here denotes the convex hull of the set A. There-
fore, any method for obtaining upper bounds on the joint
spectral radius provides sufficient conditions for stability of
systems of type (2) or (3). Conversely, if we can prove ab-
solute asymptotic stability of (2) or (3) for the set A, :=
{vA1,...,7An} for some positive scalar v, then we get an
upper bound of % on p(A). (This follows from the scaling
property of the JSR: p(A,) = vp(A).) One advantage of
working with the notion of the joint spectral radius is that it
gives a way of rigorously quantifying the performance guar-
antee of different techniques for stability analysis of systems
(2) or (3).

Perhaps the most well-established technique for proving
stability of switched systems is the use of a common (or
stmultaneous) Lyapunov function. The idea here is that
if there is a continuous, positive, and homogeneous (Lya-
punov) function V(z) : R” — R that for some v > 1 satisfies

V(yAiz) <V(z) Vi=1,...,m, Vz €R", (4)

(i.e., V(x) decreases no matter which matrix is applied),
then the system in (2) (or in (3)) is AAS. Conversely, it
is known that if the system is AAS, then there exists a
conver common Lyapunov function (in fact a norm); see
e.g. [16, p. 24]. However, this function is not in general
finitely constructable. A popular approach has been to try
to approximate this function by a class of functions that we
can efficiently search for using semidefinite programming.
Semidefinite programs (SDPs) can be solved with arbitrary
accuracy in polynomial time and lead to efficient compu-
tational methods for approximation of the JSR. As an ex-
ample, if we take the Lyapunov function to be quadratic
(i.e., V(2) = 27 Pz), then the search for such a Lyapunov
function can be formulated as the following SDP:

P = 0 5)
v2ATPA;, < P Yi=1,...,m.

The quality of performance of common quadratic (CQ)
Lyapunov functions is a well-studied topic. In particular, it
is known [5] that the estimate pcq obtained by this method*
satisfies

1
%ﬁcQ(A) < p(A) < poq(A), (6)
where n is the dimension of the matrices. This bound is a
direct consequence of John’s ellipsoid theorem and is known
to be tight [3].

In [21], the use of sum of squares (SOS) polynomial Lya-
punov functions of degree 2d was proposed as a common
Lyapunov function for the switched system in (2). The
search for such a Lyapunov function can again be formu-
lated as a semidefinite program. This method does consid-
erably better than a common quadratic Lyapunov function
in practice and its estimate psos,2q satisfies the bound

1
. =Pso0s24(A) < p(A) < psos,2a(A), (7

N

!The estimate pco is the reciprocal of the largest « that
satisfies (5) and can be found by bisection.

where n = min{m, ("‘Ls*l)}. Furthermore, as the degree 2d

goes to infinity, the estimate psos,2q4 converges to the true
value of p [21]. The semidefinite programming based meth-
ods for approximation of the JSR have been recently gener-
alized and put in the framework of conic programming [22].

1.1 Contributions and organization

It is natural to ask whether one can develop better ap-
proximation schemes for the joint spectral radius by using
multiple Lyapunov functions as opposed to requiring simul-
taneous contractibility of a single Lyapunov function with
respect to all the matrices. More concretely, our goal is
to understand how we can write inequalities among, say,
k different Lyapunov functions Vi(z),..., Vi(z) that imply
absolute asymptotic stability of (2) and can be checked via
semidefinite programming.

The general idea of using several Lyapunov functions for
analysis of switched systems is a very natural one and has al-
ready appeared in the literature (although to our knowledge
not in the context of the approximation of the JSR); see e.g.
[15], [7], [13], [12], [10]. Perhaps one of the earliest references
is the work on “piecewise quadratic Lyapunov functions”
in [15]. However, this work is in the different framework of
constrained switching, where the dynamics switches depend-
ing on which region of the space the trajectory is traversing
(as opposed to arbitrary switching). In this setting, there is
a natural way of using several Lyapunov functions: assign
one Lyapunov function per region and “glue them together”.
Closer to our setting, there is a body of work in the litera-
ture that gives sufficient conditions for existence of piecewise
Lyapunov functions of the type max{z” Piz,...,z" Pz},
min{z” Pz, ...,z7 Pya}, and conv{z” Pz, ..., z" Pyx}, i.e,
the pointwise maximum, the pointwise minimum, and the
convex envelope of a set of quadratic functions [13], [12],
[10], [14]. These works are mostly done in continuous time
for analysis of linear differential inclusions, but they have
obvious discrete time counterparts. The main drawback of
these methods is that in their greatest generality, they in-
volve solving bilinear matrix inequalities, which are non-
convex and in general NP-hard. One therefore has to turn
to heuristics, which have no performance guarantees and
their computation time quickly becomes prohibitive when
the dimension of the system increases. Moreover, all of these
methods solely provide sufficient conditions for stability with
no performance guarantees.

There are several unanswered questions that in our view
deserve a more thorough study: (i) With a focus on con-
ditions that are amenable to convex optimization, what are
the different ways to write a set of inequalities among k Lya-
punov functions that imply absolute asymptotic stability of
(2)? Can we give a unifying framework that includes the
previously proposed Lyapunov functions and perhaps also
introduces new ones? (ii) Among the different sets of in-
equalities that imply stability, can we identify some that are
less conservative than some other? (iii) The available meth-
ods on piecewise Lyapunov functions solely provide sufficient
conditions for stability with no guarantee on their perfor-
mance. Can we give converse theorems that guarantee the
existence of a feasible solution to our search for a given ac-
curacy?

In this work, we provide the foundation to answer these
questions. More concretely, our contributions can be sum-
marized as follows. We propose a unifying framework based



on a representation of Lyapunov inequalities with labeled
graphs and making some connections with basic concepts
in automata theory. This is done in Section 2, where we
define the notion of a path-complete graph (Definition 2.2)
and prove that any such graph provides an approximation
scheme for the JSR (Theorem 2.4). In this section, we also
show that many of the previously proposed methods come
from particular classes of path-complete graphs (e.g., Corol-
lary 2.5 and Corollary 2.6). In Section 3, we characterize all
the path-complete graphs with two nodes for the analysis
of the JSR of two matrices. We completely determine how
the approximations obtained from these graphs compare. In
Section 4, we study in more depth the approximation prop-
erties of a particular class of path-complete graphs that seem
to perform very well in practice. We prove in Section 4.1 that
certain path-complete graphs that are in some sense dual to
each other always give the same bound on the JSR (Theo-
rem 4.1). We present a numerical example in Section 4.2.
Section 5 includes approximation guarantees for a subclass
of our methods, and in particular a converse theorem for
the method of max-of-quadratics Lyapunov functions (The-
orem 5.1). Finally, our conclusions and some future direc-
tions are discussed in Section 6.

2. PATH-COMPLETE GRAPHS AND THE
JOINT SPECTRAL RADIUS

In what follows, we will think of the set of matrices A :=
{A1, ..., Am} as a finite alphabet and we will often refer to a
finite product of matrices from this set as a word. We denote
the set of all words A;; ... As; of length t by A*. Contrary to
the standard convention in automata theory, our convention
is to read a word from right to left. This is in accordance
with the order of matrix multiplication. The set of all finite
words is denoted by A*; ie., A* = (J A

tezt

The basic idea behind our framework is to represent through

a graph all the possible occurrences of products that can ap-
pear in a run of the dynamical system in (2), and assert via
some Lyapunov inequalities that no matter what occurrence
appears, the product must remain stable. A convenient way
of representing these Lyapunov inequalities is via a directed
labeled graph G(N, E). Each node of this graph is assigned
to a (continuous, positive definite, and homogeneous) Lya-
punov function V;(x) : R™ — R, and each edge is labeled by
a finite product of matrices, i.e., by a word from the set A*.
As illustrated in Figure 1, given two nodes with Lyapunov
functions V;(z) and Vj(x) and an arc going from node i to
node j labeled with the matrix A;, we write the Lyapunov
inequality:

Vi(Aiz) < Vi(z) Vz eR" (8)

The problem that we are interested in is to understand
which sets of Lyapunov inequalities imply stability of the
switched system in (2). We will answer this question based
on the corresponding graph.

For reasons that will become clear shortly, we would like
to reduce graphs whose arcs have arbitrary labels from the
set A" to graphs whose arcs have labels from the set A, i.e,
labels of length one. This is explained next.

DEFINITION 2.1. Given a labeled directed graph G(N, E),
we define its expanded graph G°(N¢, E®) as the outcome
of the following procedure. For every edge (i,j) € E with

Al
Figure 1: Graphical representation of Lyapunov in-
equalities. The graph above corresponds to the Lya-
punov inequality V;(A;z) < V;(z). Here, A; can be a

single matrix from A or a finite product of matrices
from A.

label A;p ... Ay € Ak, where k > 1, we remove the edge
(4,7) and replace it with k new edges (Sq,Sq+1) € E°\ E :
q € {0,...,k — 1}, where so = i and sp = j.> (These
new edges go from mode i through k — 1 newly added nodes
S1y...,86—1 and then to node j.) We then label the new
edges (i,81)y ..., (Sqy Sq41)y- -+, (Sk=1,7) with As1, ..., Aiy Te-
spectively.

Graph G(N,E)

Expanded Graph G*(IV¢,E?)

Figure 2: Graph expansion: edges with labels of
length more than one are broken into new edges
with labels of length one.

An example of a graph and its expansion is given in Figure 2.
Note that if a graph has only labels of length one, then its
expanded graph equals itself. The next definition is central
to our development.

DEFINITION 2.2. Given a directed graph G(N, E) whose
arcs are labeled with words from the set A*, we say that the
graph is path-complete, if for all finite words Ao, ... As, of
any length k (i.e., for all words in A*), there is a directed
path in its expanded graph G°(N°¢, E°) such that the labels
on the edges of this path are the labels Ay, up to Ao, .

In Figure 3, we present eight path-complete graphs on
the alphabet A = {41, A2}. The fact that these graphs are
path-complete is obvious for the graphs in (a), (b), (e), (f),
and (h), but perhaps not so obvious for graphs in (c), (d),
and (g). One way to check if a graph is path-complete is to
think of it as a finite automaton by introducing an auxiliary
start node (state) with free transitions to every node and
by making all the other nodes be accepting states. Then,
there are well-known algorithms (see e.g. [11, Chap. 4])
that check whether the language accepted by an automaton
is A", which is equivalent to the graph being path-complete.
At least for the cases where the automata are deterministic
(i.e., when all outgoing arcs from any node have different

It is understood that the node index s, depends on the
original nodes ¢ and j. To keep the notation simple we write

sq instead of s .



labels), these algorithms are very efficient. (They run in
O(|N]?) time.) Similar algorithms exist in the symbolic dy-
namics literature; see e.g. [19, Chap. 3]. Our interest in
path-complete graphs stems from the Theorem 2.4 below
that establishes that any such graph gives a method for ap-
proximation of the JSR. We introduce one last definition
before we state this theorem.

DEFINITION 2.3. Let A = {A1,...,An} be a set of ma-
trices. Given a path-complete graph G (N, E) and |N| func-
tions Vi(x), we say that {Vi(xz) | i =1,...,|N|} is a Piece-
wise Lyapunov Function (PLF) associated with G (N, E) if

Vi (L(e)z) <Vi(x) vz eR", VeekE,

where L (e) € A" is the label associated with edge e € E
going from node i to node j.

THEOREM 2.4. Consider a finite set of matrices A = {A1,
oo, An}. For a scalar v > 0, let Ay := {yAi,...,vAn}.
Let G(N, E) be a path-complete graph whose edges are labeled
with words from A~. If there exist positive, continuous, and
homogeneous® Lyapunov functions V;(z), one per node of
the graph, such that {Vi(z) | it = 1,...,|N|} is a piecewise
Lyapunov function associated with G(N, E), then p(A) < %

Proor. We will first prove the claim for the special case
where the labels of the arcs of G(NN, E) belong to A, and
therefore G(N, E) = G°(N¢, E°). The general case will be
reduced to this case afterwards. Let us take the degree of
homogeneity of the Lyapunov functions V;(z) to be d, i.e.,
Vi(Az) = A\?Vi(z) for all A\ € R. (The actual value of d is
irrelevant.) By positivity, continuity, and homogeneity of
Vi(x), there exist scalars a; and 3; with 0 < a; < 3; for
i=1,...,|N]|, such that

aillz||” < Vi(e) < Billzll%, (9)

for all z € R"® and for all ¢ = 1,...,|N|. Let
&= max 2 (10)

Now consider an arbitrary product As, ...As, of length k.
Because the graph is path-complete, there will be a directed
path corresponding to this product that consists of k arcs,
and goes from some node ¢ to some node j. If we write the
chain of k Lyapunov inequalities associated with these arcs
(cf. Figure 1), then we get
Vj('YkAffk Aoy z) < Vi),
which by homogeneity of the Lyapunov functions can be
rearranged to

(V(AA)) <L ()

Vi(z) v

3The requirement of homogeneity can be replaced by ra-
dial unboundedness which is implied by homogeneity and
positivity. However, since the dynamical system in (2) is
homogeneous, there is no conservatism in asking V;(z) to be
homogeneous [25].

We can now bound the norm of A,, ... A, as follows:

Aoy, .. Aoy || < maxM
v (]|
1 1
< (/Bl)d gd(Aok...Aglm)
— - max T
(07 x ‘/ld(x)
1
< (&)di
< Y o
11
< el
fyk

where the last three inequalities follow from (9), (11), and
(10) respectively. From the definition of the JSR in (1),
after taking the k-th root and the limit & — oo, we get that
p(A) < % and the claim is established.

Now consider the case where at least one edge of G(N, E)
has a label of length more than one and hence G°(N°¢, E°) #
G(N, E). We will start with the Lyapunov functions V;(x)
assigned to the nodes of G(N, E) and from them we will
explicitly construct |N¢| Lyapunov functions for the nodes
of G°(N°, E°) that satisfy the Lyapunov inequalities associ-
ated to the edges in E. Once this is done, in view of our pre-
ceding argument and the fact that the edges of G*(N°¢, E°)
have labels of length one by definition, the proof will be
completed.

For j € N°, let us denote the new Lyapunov functions by
Vi (z). It is sufficient to give the construction for the case
where |[N¢| = |N| + 1. The result for the general case with
IN¢| = |N|+1, 1> 1, follows by induction. Let s € N°\N
be the added node in the expanded graph, and ¢, € N be
such that (s,q) € E° and (r,s) € E° with Ay, and A, as
the corresponding labels respectively. Define

L[ Vi), if jEN
Y (a:)—{ Vo (Agqz), if j=s. (12

By construction, r and ¢, and subsequently, Asq and A,s
are uniquely defined and hence, {V (z) | j € N°} is well
defined. We only need to show that

Vo (Asqz) < Vi (2) (13)
Vi (Arsz) < Vi (). (14)

Inequality (13) follows trivially from (12). Furthermore, it
follows from (12) that

Vi (Arsm) = Vg (AsgArs)
S VT (:E) )

where the inequality follows from the fact that for ¢ € N,
the functions V;(z) satisfy the Lyapunov inequalities of the
edges of G(N,E). O

REMARK 2.1. If the matriz Asq is not invertible, the ex-
tended function Vi (x) as defined in (12) will only be positive
semidefinite. However, since our goal is to approximate the
JSR, we will never be concerned with invertibility of the ma-
trices in A. Indeed, since the JSR is continuous in the en-
tries of the matrices [16], we can always perturb the matrices
slightly to make them invertible without changing the JSR by
much. In particular, for any a > 0, there exist 0 < €, < a
such that

Asq _ Agq + 61
1+4+¢
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Figure 3: Examples of path-complete graphs for the
alphabet {41, A>}. If Lyapunov functions satisfying
the inequalities associated with any of these graphs
are found, then we get an upper bound of unity on
p(A17 AQ)'

is invertible and (12)—(14) are satisfied with Asq = Agq.

To understand the generality of this framework more clearly,
let us revisit the path-complete graphs in Figure 3 for the
study of the case where the set A = {A1, A2} consists of
only two matrices. For all of these graphs if our choice
for the Lyapunov functions V(z) or Vi(z) and Va(z) are
quadratic functions or sum of squares polynomial functions,
then we can formulate the well-established semidefinite pro-
grams that search for these candidate Lyapunov functions.

The graph in (a), which is the simplest one, corresponds to
the well-known common Lyapunov function approach. The
graph in (b) is a common Lyapunov function applied to all
products of length two. This graph also obviously implies
stability.® But the graph in (c) tells us that if we find a Lya-
punov function that decreases whenever A;, A2, and Az A;
are applied (but with no requirement when A; As is applied),
then we still get stability. This is a priori not so obvious
and we believe this approach has not appeared in the lit-
erature before. We will later prove (Theorem 5.2) a bound
for the quality of approximation of path-complete graphs of
this type, where a common Lyapunov function is required to
decrease with respect to products of different lengths. The
graph in (c) is also an example that explains why we needed
the expansion process. Note that for the unexpanded graph,
there is no path for the word A; A or any succession of the
word Aj As, or for any word of the form Agkil, k € N. How-
ever, one can check that in the expanded graph of graph (c),
there is a path for every finite word, and this in turn allows
us to conclude stability from the Lyapunov inequalities of
graph (c).

Let us comment now on the graphs with two nodes and
four arcs, which each impose four Lyapunov inequalities. We
can show that if Vi (z) and Va(zx) satisfy the inequalities of
any of the graphs (d), (e), (f), or (g), then max{Vi(x), Va(z)}
is a common Lyapunov function for the switched system. If

4By slight abuse of terminology, we say that a graph implies
stability meaning (of course) that the associated Lyapunov
inequalities imply stability.

Vi(z) and Va(z) satisfy the inequalities of any of the graphs
in (e), (f), and (h), then min{Vi(z), V2(x)} is a common Lya-
punov function. These arguments serve as alternative proofs
of stability and in the case where V; and V2 are quadratic
functions, they correspond to the works in [13], [12], [10],
[14]. The next two corollaries prove these statements in a
more general setting.

COROLLARY 2.5. Consider a set of m matrices and the
switched linear system in (2) or (3). If there exist k positive
definite matrices P;j such that

v{i,k} € {1,...,m}>, Fje{1,...,m}
such that VAT PjA; < Py, (15)

for some v > 1, then the system is absolutely asymptotically
stable. Moreover, the pointwise minimum

min{wTPmc, e ,xTPka:}

of the quadratic functions serves as a common Lyapunov
function.

PROOF. The inequalities in (15) imply that every node of
the associated graph has outgoing edges labeled with all the
different m matrices. Therefore, it is obvious that the graph
is path-complete. The proof that the pointwise minimum of
the quadratics is a common Lyapunov function is easy and
left to the reader. [J

COROLLARY 2.6. Consider a set of m matrices and the
switched linear system in (2) or (3). If there exist k positive
definite matrices P; such that

V{i,j} e {1,...,m}*, 3k e{1,...,m}
such that VAT PjA; < Py, (16)

for some v > 1, then the system is absolutely asymptotically
stable. Moreover, the pointwise maximum

max{z’ Piz,... " Py}

of the quadratic functions serves as a common Lyapunov
function.

PROOF. The inequalities in (16) imply that every node
of the associated graph has incoming edges labeled with all
the different m matrices. This implies that the associated
graph is path-complete. To see this, consider any product
A, ... Ay, and consider a new graph obtained by reversing
the directions of all the edges. Since this new graph has
now outgoing edges with all different labels for every node,
it is clearly path-complete and in particular it has a path for
the backwards word A;, ... A;, . If we now trace this path
backwards, we get exactly a path in the original graph for
the word As, ... A .

The proof that the pointwise maximum of the quadratics
is a common Lyapunov function is easy and again left to the
reader. []

REMARK 2.2. The linear matriz inequalities in (15) and
(16) are (convex) sufficient conditions for existence of min-
of-quadratics or max-of-quadratics Lyapunov functions. The
converse is not true. The works in [13], [12], [10], [14] have
additional multipliers in (15) and (16) that make the in-
equalities non-convexr but when solved with a heuristic method
contain a larger family of min-of-quadratics and maz-of-
quadratics Lyapunov functions. Fven if the non-conver in-
equalities with multipliers could be solved exactly, except for



special cases where the S-procedure is exact (e.g., the case
of two quadratic functions), these methods still do not com-
pletely characterize min-of-quadratics and maz-of-quadratics
functions.

REMARK 2.3. Two other well-established references in the
literature that (when specialized to the analysis of arbitrary
switched linear systems) turn out to be particular classes of
path-complete graphs are the work in [17] on “path-dependent
quadratic Lyapunov functions”, and the work in [8] on “pa-
rameter dependent Lyapunov functions”. In fact, the LMIs
suggested in these works are special cases of Corollary 2.5
and 2.6 respectively, hence revealing a connection to the
min/maz-of-quadratics type Lyapunov functions. We will
elaborate further on this connection in an extended version
of this work.

When we have so many different ways of imposing conditions
for stability, it is natural to ask which ones are better. This
seems to be a hard question in general, but we have stud-
ied in detail all the path-complete graphs with two nodes
that imply stability for the case of a switched system with
two matrices. This is the subject of the next section. The
connections between the bounds obtained from these graphs
are not always obvious. For example, we will see that the
graphs (a), (e), and (f) always give the same bound on the
joint spectral radius; i.e, one graph will succeed in proving
stability if and only if the other will. So, there is no point in
increasing the number of decision variables and the number
of constraints and impose (e) or (f) in place of (a). The same
is true for the graphs in (¢) and (d), which makes graph (c)
preferable to graph (d). (See Proposition 3.2.)

3. PATH-COMPLETE GRAPHS WITH TWO
NODES

In this section, we characterize and compare all the path-
complete graphs consisting of two nodes, an alphabet set
A = {A1, A2}, and arc labels of unit length. We refer
the reader to [23], [24] for a more general understanding
of how the Lyapunov inequalities associated to certain pairs
of graphs relate to each other.

3.1 The set of path-complete graphs

The next lemma establishes that for thorough analysis of
the case of two matrices and two nodes, we only need to
examine graphs with four or less arcs.

LEmMMA 3.1. Let G ({1,2},FE) be a path-complete graph
for A = {A1, A2} with labels of length one. Let {Vi,V2} be
a piecewise Lyapunov function for G. If |E| > 4, then, either

(i) there exists é € E such that G ({1,2}, E\é) is a path-
complete graph,

(i) either Vi or Va or both are common Lyapunov func-
tions for A.

PRroOOF. If node 1 has more than one self-arc, then either
these arcs have the same label, in which case one of them
can be removed without changing the output set of words,
or, they have different labels, in which case V; is a Lyapunov
function for A. By symmetry, the same argument holds for
node 2. It remains to present a proof for the case where
no node has more than one self-arc. If |E| > 4, then at
least one node has three or more outgoing arcs. Without
loss of generality let node 1 be as such, eq, ez, and es be

the corresponding arcs, and L (e1) = L (e2) = A1. Let D (e)
denote the destination node of e € E. If D (e1) = D (e2) = 2,
then e; (or ez) can be removed without changing the output
set. If D(e1) # D (ez2), assume, without loss of generality,
that D (e1) = 1 and D (e2) = 2. Now, if L (e3) = A1, then
regardless of its destination node, es can be removed. The
only remaining possibility is that L (es) = A2 and D (e3) =
2. In this case, it can be verified that ez can be removed
without affecting the output set of words. [

It can be verified that a path-complete graph with two
nodes and less than four arcs must necessarily place two
arcs with different labels on one node, which necessitates
existence of a single Lyapunov function for the underlying
switched system. Since we are interested in exploiting the fa-
vorable properties of Piecewise Lyapunov Functions (PLF's)
in approximation of the JSR we will focus on graphs with
four arcs.

3.2 Comparison of performance

It can be verified that for path-complete graphs with two
nodes, four arcs, and two matrices, and without multiple self
loops on a single node, there are a total of nine distinct graph
topologies to consider (several redundant cases arise which
can be shown to be equivalent to one of the nine cases via
swapping the nodes). Of the nine graphs, six have the prop-
erty that every node has two incoming arcs with different
labels—we call these primal graphs; six have the property
that every node has two outgoing arcs with different labels—
we call these dual graphs; and three are in both the primal
and the dual set of graphs—we call these self-dual graphs.
The self-dual graphs are least interesting to us since, as we
will show, they necessitate existence of a single Lyapunov
function for A (cf. Proposition 3.2, equation (19)).

The (strictly) primal graphs are Graph G (Figure 3 (g)),
Graph G2, (Figure 3 (d)), and Graph Gs which is obtained
by swapping the roles of A; and Az in G2 (not shown).
The self-dual graphs are Graph G4 (Figure 3 (f)), Graph G5
(Figure 3 (e)), and Graph G¢ which is obtained by swapping
the roles of A1 and Az in G5 (not shown). The (strictly) dual
graphs are obtained by reversing the direction of the arrows
in the primals and are denoted by G4, G4, G% respectively.
For instance, G’ is the graph shown in Figure 3 (h). The
rest of the dual graphs are not shown.

Note that all of these graphs perform at least as well
as a common Lyapunov function because we can always
take Vi (z) = V2 (z). We know from Corollary 2.6 and 2.5
that the primal graphs imply that max{Vi (z), V2 (z)} is
a Lyapunov function, whereas, the dual graphs imply that
min {V; (z), V2 (x)} is a Lyapunov function.

Notation: Given a set of matrices A = {A1, -+, An},
a path-complete graph G (N, E), and a class of functions
V, we denote by pv,c (A), the upperbound on the JSR of
A that can be obtained by numerical optimization of PLF's
VieV,ie€{l,---|N|}, defined over G. With a slight abuse
of notation, we denote by py (A), the upperbound that is
obtained by using a common Lyapunov function V' € V.

PROPOSITION 3.2. Consider A= {A1, A2}, and let
_Ag = {Al,AgAl,Ag}, .A,Q = {A1,A1A27Ag}7
As = {AQ,AlAQ,A%}, .A,3 = {AQ,AQA:“A%}. For S €
{Ai, A | i = 2,3}, let Gs = G ({1}, Es) be the graph with
one node and three edges such that {L(e) | e € Es} = S.



Then, we have

Pvics (A) = pv,ca, (A, pv.as (A) = py.aa, (A), (17)
ﬁV?G’Q ("4) = [)V’GA/Q (A)7 ﬁVaG’S (A) = ﬁvché (A)7 (18)
pvsc; (A) = pv (A),

pv.ci (A) = pv,ay (A). (20)

PROOF. We start by proving the left equality in (17). Let
{Vi1, V2} be a PLF associated with G2. It can be verified that
V1 is a Lyapunov function associated with G 4,, and there-
fore, pv,c4, (A) < pv,c, (A). Similarly, if V' € V is a Lya-
punov function associated with G 4, , then one can check that
{(Vi,Vo | Vi (z) =V (z),Va(z) =V (A2x)} is a PLF associ-
ated with Gz, and hence, pv,a,, (A) > pv.c, (A). The
proofs for the rest of the equalities in (17) and (18) are
analogous. The proof of (19) is as follows. Let {V1,V2} be
a PLF associated with G;, ¢ = 4,5,6. It can be then veri-
fied that V = Vi 4+ V42 is a common Lyapunov function for
A, and hence, pv,q, (A) > pv (A), ¢ = 4,5,6. The other
direction is trivial: If V' € V is a common Lyapunov func-
tion for A, then {V1,V2 | Vi = Vo = V} is a PLF associated
with G;, and hence, py,q, (A) < pv (A), i = 4,5,6. The
proof of (20) is based on similar arguments; the PLFs asso-
ciated with G1 and G can be derived from one another via
Vi (Aiz) = Vi (z), and V3 (Asz) = Vo (z). [

i=4,5,6, (19)

REMARK 3.1. Proposition 3.2 (20) establishes the equiva-
lence of the bounds obtained from the primal and dual graphs
G1 and G for general class of Lyapunov functions. This,
however, is not true for graphs G2 and Gs and there exist
examples for which

pv,Gs (A) # pv,ay, (A),
pv.cs (A) # pv,ay (A).

The three primal graphs G1, G2, and G3 can outperform
one another depending on the problem data. We ran 100
test cases on random 5 X 5 matrices with elements uniformly
distributed in [—1,1], and observed that G1 resulted in the
least conservative bound on the JSR in approximately 77%
of the test case, and G2 and G3 in approximately 53% of
the test cases (the overlap is due to ties). Furthermore,
pvsc, ({A1, A2}) is invariant under (i) relabeling of A; and
Az (obvious), and (ii) transposing of A; and Az (Corol-
lary 4.2). These are desirable properties which fail to hold
for G2 and G3 or their duals. Motivated by these observa-
tions, we generalize G and its dual G} to the case of m
matrices and m Lyapunov functions and establish that they
have certain appealing properties. We will prove in the next
section (cf. Theorem 4.3) that these graphs always perform
better than a common Lyapunov function in 2 steps (i.e.,
for A% = {A§7A1A2,A2A17A§})7 whereas, this fact is not
true for G2 and Gs (or their duals).

4. A PARTICULAR FAMILY OF PATH-
COMPLETE GRAPHS

The framework of path-complete graphs provides a multi-
tude of semidefinite programming based techniques for the
approximation of the JSR whose performance vary with
computational cost. For instance, as we increase the num-
ber of nodes of the graph, or the degree of the polynomial

Lyapunov functions assigned to the nodes, or the number of
arcs of the graph that instead of labels of length one have la-
bels of higher length, we clearly obtain better results but at
a higher computational cost. Many of these approximation
techniques are asymptotically tight, so in theory they can
be used to achieve any desired accuracy of approximation.
For example,

pysos,za(A) = p(A) as 2d — oo,

where V99924 denotes the class of sum of squares homoge-
neous polynomial Lyapunov functions of degree 2d. (Recall
our notation for bounds from Section 3.2.) It is also true
that a common quadratic Lyapunov function for products
of };igher length achieves the true JSR asymptotically [16];
ie.”,

v/ pyz(A?) — p(A) as t — oo.

Nevertheless, it is desirable for practical purposes to iden-
tify a class of path-complete graphs that provide a good
tradeoff between quality of approximation and computa-
tional cost. Towards this objective, we propose the use of m
quadratic functions 2 P;x satisfying the set of linear matrix
inequalities (LMIs)

P > 0 Vi=1,...,m, (21)
V?ATPA; = P Vij={1,...,m}?
or the set of LMIs
P > 0 Vi=1,...,m, (22)
’)’QA;PZAZ < Pj Vi,j = {1,...,m}2

for the approximation of the JSR of a set of m matrices.
Observe from Corollary 2.5 and Corollary 2.6 that the first
LMIs give rise to max-of-quadratics Lyapunov functions,
whereas the second LMIs lead to min-of-quadratics Lya-
punov functions. Throughout this section, we denote the
path-complete graphs associated with (21) and (22) with
G1 and G respectively. For the case m = 2, our notation
is consistent with the previous section and these graphs are
illustrated in Figure 3 (g) and (h). Note that we can ob-
tain G; and G} from each other by reversing the direction
of the edges. For this reason, we say that these graphs are
dual to each other. We will prove later in this section that
the approximation bound obtained by these graphs (i.e., the
reciprocal of the largest  for which the LMIs (21) or (22)
hold) is always the same and lies within a multiplicative fac-
tor of 4= of the true JSR, where n is the dimension of the

Un
matrices.

4.1 Duality and invariance under transposi-
tion

In [9], [10], it is shown that absolute asymptotic stability
of the linear difference inclusion in (3) defined by the ma-
trices A = {41,...,An} is equivalent to absolute asymp-
totic stability of (3) for the transposed matrices A7 :=
{AT,..., AT }. Note that this fact is obvious from the def-
inition of the JSR in (1), since p(A) = p(AT). Tt is also
well-known that

py2 (A) = pyz («AT)~

5By V? we denote the class of quadratic homogeneous poly-
nomials. We drop the superscript “SOS” because nonnega-
tive quadratic polynomials are always sums of squares.




Indeed, if 2T Pz is a common quadratic Lyapunov function
for the set A, then 7 P~ 'z is a common quadratic Lyapunov
function for the set .AT. However, this nice property is not
true for the bound obtained from some other techniques.
For example®,

Pysos,a(A) # pysos,a (AT). (23)

Similarly, the bound obtained by non-convex inequalities
proposed in [9] is not invariant under transposing the matri-
ces. For such methods, one would have to run the numerical
optimization twice— once for the set A and once for the set
AT~ and then pick the better bound of the two. We will
show that by contrast, the bound obtained from the LMIs
in (21) and (22) are invariant under transposing the matri-
ces. Before we do that, let us prove a general result, which
states that the bounds resulting from a path-complete graph
(with quadratic Lyapunov functions as nodes) and its dual
are always the same, provided that these bounds are invari-
ant under transposing the matrices.

THEOREM 4.1. Let G(N, E) be a path-complete graph, and
let its dual graph G'(N, E') be the graph obtained by revers-
ing the direction of the edges and the order of the matrices
in the labels of each edge. If

pv2.c(A) = py2 (A7), (24)

then, the two following equations hold:
Pvz,6(A) = pv2 g/ (A), (25)
pv2.cr(A) = py2 c (AT). (26)

ProOF. For ease of notation, we prove the claim for the
case where the labels of the edges of G(N, E) have length
one. The proof of the general case is identical.

Pick an arbitrary edge (¢,j) € E going from node i to
node j, and let the associated constraint be given by

AP A < Py,

for some A; € A. If this inequality holds for some posi-
tive definite matrices P; and Pj, then because py2 g(A) =
pv2.a(A"), we will have

AP A < Py,
for some other positive definite matrices PZ and ﬁj. By

applying the Schur complement twice, we get that the last
inequality implies

T 75— ~_
AP A =< P

But this inequality shows that I:’i_l and }5]-_1 satisfy the con-
straint associated with edge (j,i) € E’. Therefore, the claim
in (25) is established. The equality in (26) follows directly
from (24) and (25). O

COROLLARY 4.2. For the path-complete graphs Gi1 and
G2 associated with the LMIs in (21) and (22), we have

Pvz.c, (A) = py2 (AT) = ﬁv%c’l (A) = ﬁvZ,G/l (AT)~
(27)
®We have examples that show the statement in (23), which

we do not present because of space limitations. See [9] for
such an example in the continuous time setting.

ProoOF. We prove the leftmost equality. The other two
equalities then follow from Theorem 4.1. Let P;,i=1,...,m
satisfy the LMIs in (21) for the set of matrices A. The reader
can check that

Py = AP AT

satisfy the LMIs in (21) for the set of matrices A7. [

i=1,...,m

We next prove a bound on the quality of approximation
of the estimate resulting from the LMIs in (21) and (22).

THEOREM 4.3. Let A be a set of m matrices in R™*™ with
JSR p(A). Let py2 o, (A) and py2 o (A) be the bounds on
the JSR obtained from the LMIs in (21) and (22) respec-
tively. Then,

%ﬁm,@ (A) < p(A) < ., (A), (28)

and

FaPr e () <o) < gy (A, (29)

Proor. By Corollary 4.2, py2 g, (A) = py2 g (A) and
therefore it is enough to prove (28). The right inequality in
(28) is an obvious consequence of G being a path-complete
graph (Theorem 2.4). To prove the left inequality, consider
the set A% consisting of all m? products of length two. In
view of (6), a common quadratic Lyapunov function for this
set satisfies the bound

%ﬁvz (A2) < p(A?).

It is easy to show that
p(A%) = p*(A).
See e.g. [16]. Therefore,

1 Al 2

T\/ﬁpéz (A%) < p(A). (30)
Now suppose for some v > 0, 7 Qz is a common quadratic
Lyapunov function for the matrices in A2; i.e., it satisfies

¥
Q > 0
YHAANTQAA;, < Q Vi, j={1,...

Then, we leave it to the reader to check that
P =Q+ A{ QA
satisfy (21). Hence,

,m}2.

i=1,....m

1
Pve.i (A) < pFa (A7),
and in view of (30) the claim is established. [J

Note that the bounds in (28) and (29) are independent
of the number of matrices. Moreover, we remark that these
bounds are tighter, in terms of their dependence on n, than
the known bounds for py,sos,2a for any finite degree 2d of the
sum of squares polynomials. The reader can check that the
bound in (7) goes asymptotically as ﬁ Numerical evidence
suggests that the performance of both the bound obtained
by sum of squares polynomials and the bound obtained by
the LMIs in (21) and (22) is much better than the provable
bounds in (7) and in Theorem 4.3. The problem of improv-
ing these bounds or establishing their tightness is open. It



goes without saying that instead of quadratic functions, we
can associate sum of squares polynomials to the nodes of G
and obtain a more powerful technique for which we can also
prove better bounds with the exact same arguments.

4.2 Numerical example

In the proof of Theorem 4.3, we essentially showed that
the bound obtained from LMIs in (21) is tighter than the
bound obtained from a common quadratic applied to prod-
ucts of length two. The example below shows that the LMIs
in (21) can in fact do better than a common quadratic ap-
plied to products of any finite length.

EXAMPLE 4.1. Consider the set of matrices A = {A1, A2},

with
10 0 1
n=l o) a0 )

This is a benchmark set of matrices that has been studied
in [3], [21], [2] because it gives the worst case approzimation
ratio of a common quadratic Lyapunov function. Indeed, it
is easy to show that p(A) = 1, but py2(A) = /2. Moreover,
the bound obtained by a common quadratic function applied
to the set A® is

1
Pia(A) =27,

which for no finite value of t is exact. On the other hand,

we show that the LMIs in (21) give the exact bound; i.e.,

pv2,c, (A) = 1. Due to the simple structure of Ay and As,

we can even give an analytical expression for our Lyapunov

functions. Given any € > 0, the LMIs in (21) with v =
1/ (1 +¢) are feastble with

a 0 b 0
S ER I P

for any b >0 and a > b/2e.

5. CONVERSE LYAPUNOV THEOREMS
AND MORE APPROXIMATION BOUNDS

It is well-known that existence of a Lyapunov function
which is the pointwise maximum of quadratics is not only
sufficient but also necessary for absolute asymptotic stabil-
ity of (2) or (3) [20]. This is a very intuitive fact, if we re-
call that switched systems of type (2) and (3) always admit
a convex Lyapunov function. Indeed, if we take “enough”
quadratics, the convex and compact unit sublevel set of a
convex Lyapunov function can be approximated arbitrarily
well with sublevel sets of max-of-quadratics Lyapunov func-
tions, which are intersections of ellipsoids. An obvious con-
sequence of this fact is that the bound obtained from max-
of-quadratics Lyapunov functions is asymptotically tight for
the approximation of the JSR. However, this converse Lya-
punov theorem does not answer two natural questions of im-
portance in practice: (i) How many quadratic functions do
we need to achieve a desired quality of approximation? (ii)
Can we search for these quadratic functions via semidefinite
programming or do we need to resort to non-convex for-
mulations? Our next theorem provides an answer to these
questions. We then prove a similar result for another inter-
esting subclass of our methods. Due to length constraints,
we only briefly sketch the common idea behind the two the-
orems. The interested reader can find the full proofs in the
journal version of the present paper.

THEOREM 5.1. Let A be any set of m matrices in R™*".
Given any positive integer l, there exists an explicit path-

complete graph G consisting of m' =" nodes assigned to quadratic

Lyapunov functions and m! arcs with labels of length one
such that the linear matriz inequalities associated with G
imply existence of a mazx-of-quadratics Lyapunov function
and the resulting bound obtained from the LMIs satisfies

1 . R
T\/EPW,G(A) < p(A) < py2 g (A). (31)
_ THEOREM 5.2. Let A be a set of matrices in R"*". Let
G ({1}, E) be a path-complete graph, and | be the length of
the shortest word in A = {L(e) : e € E}. Then py2,5 (A)
provides an estimate of p (A) that satisfies

e () < ) < g (A)
PROOF. (Sketch of the proof of Theorems 5.1 and 5.2) For
the proof of Theorem 5.1, we define the graph G as follows:
there is one node vy, for each word w € {1,...,m}~*. For
each node v, and each index j € {1,...,m}, there is an
edge with the label A; from vy, to v, iff w'j = zw for some
label x € {1,...,m} (zw’ means the concatenation of the
label z with the word w').
Now, for both proofs, denoting the corresponding graph by
G, we show that if A' has a common quadratic Lyapunov
function, then

ﬁVQ G < 17
which implies the result. [

REMARK 5.1. In view of NP-hardness of approximation
of the JSR [27], the fact that the number of quadratic func-
tions and the number of LMIs grow exponentially in [ is to
be expected.

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

We studied the use of multiple Lyapunov functions for the
formulation of semidefinite programming based approxima-
tion algorithms for computing upper bounds on the joint
spectral radius of a finite set of matrices (or equivalently
establishing absolute asymptotic stability of an arbitrary
switched linear system). We introduced the notion of a
path-complete graph, which was inspired by well-established
concepts in automata theory. We showed that every path-
complete graph gives rise to a technique for the approxima-
tion of the JSR. This provided a unifying framework that
includes many of the previously proposed techniques and
also introduces new ones. (In fact, all families of LMIs that
we are aware of appear to be particular cases of our method.)
We compared the quality of the bound obtained from certain
classes of path-complete graphs, including all path-complete
graphs with two nodes on an alphabet of two matrices, and
also a certain family of dual path-complete graphs. We pro-
posed a specific class of such graphs that appear to work
particularly well in practice. We proved that the bound ob-
tained from these graphs is invariant under transposition of
the matrices and is always within a multiplicative factor of
1/¥n from the true JSR. Finally, we presented two converse
Lyapunov theorems, one for a new class of methods that pro-
pose the use of a common quadratic Lyapunov function for



a set of words of possibly different lengths, and the other
for the well-known methods of minimum and maximum-of-
quadratics Lyapunov functions. These theorems yield ex-
plicit and systematic constructions of semidefinite programs
that achieve any desired accuracy of approximation.

Some of the interesting questions that can be explored
in the future are the following. What is the complexity of
recognizing path-complete graphs when the underlying fi-
nite automata are non-deterministic? What are some other
classes of path-complete graphs that lead to new techniques
for proving stability of switched systems? How can we com-
pare the performance of different path-complete graphs in
a systematic way? Given a set of matrices, a class of Lya-
punov functions, and a fixed size for the graph, can we come
up with the least conservative topology of a path-complete
graph? Within the framework that we proposed, do all the
Lyapunov inequalities that prove stability come from path-
complete graphs? What are the analogues of the results of
this paper for continuous time switched systems? We hope
that this work will stimulate further research in these direc-
tions.
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