589 research outputs found

    InGaAs/GaAs Quantum Dot Solar Cells by Metal Organic Chemical Vapour Deposition

    Get PDF
    Along with the ongoing research and industry development to reduce the cost of conventional PV devices such as Si-based solar cells, significant research efforts have been focused on exploring new concepts and approaches for high efficiency III-V compound semiconductor solar cells, especially through the fast emerging nanotechnology to exploit the unique properties of nanostructures such as self-assembled quantum dots (QDs). By incorporating self-assembled QDs into the intrinsic region of a standard p-i-n solar cell structure during the epitaxial growth, photons in the solar spectrum with energy lower than the energy gap of the host material can be absorbed by the QD layers, leading to an extended photoresponse to longer wavelengths and hence larger photocurrent. In addition, the size and composition of the QDs can be varied and thereby allowing the bandgap to be tuned for absorption in different regime of the solar spectrum. However, due to the small QD absorption cross section, the increase of photocurrent in QDSCs is not significant and always accompanied with some reduction in other device characteristics such as the open circuit voltage and fill factor. In this thesis, self-assembled In0.5Ga0.5As/GaAs QDSCs have been designed, fabricated, characterized and investigated in comparison with conventional GaAs p-i-n solar cells. The properties and fundamental mechanisms behind their complicated photoelectrical behaviours were analysed and understood. Several approaches were proposed and carried out to improve the device performance of QDSCs, either during the epitaxial growth process or after the growth and fabrication of the solar cells. Stacking more QD layers is supposed to enhance the total volume of QD material and hence the light absorption. We carried out experiments to grow QDSC structures with increased number of QD layers. However, much reduced photocurrent and conversion efficiency for 15 and 20-layer samples were observed, which could be due to low carrier extraction efficiency and strain-induced defects. In order to improve the carrier extraction efficiency and consequently more enhanced photocurrent, modulation doping has been introduced into QDs layers to partially populate the confined states with electrons. The modulation doping has been found to be effective to improve carrier transport and collection efficiency, leading to an enhancement of the external quantum efficiency over the whole solar cell response range and thus the conversion efficiency. We have also taken two different post-growth approaches to improve the QDSC efficiency, namely the rapid thermal annealing and surface plasmonic light trapping. Firstly, QDSCs with different layers were annealed at various temperatures between 700 and 850 °C with the device annealed at the highest temperature of 850 °C displayed the highest efficiency increase of 41.42 % from 10.26 % to 14.51 %, compared to the as-grown sample. Secondly, it was found that a combination of 120 nm diameter hemispherical Ag nanoparticle and a 5 nm thick TiO2 dielectric film pre-deposited on the back of the GaAs substrate was the optimum light trapping configuration for our QDSC. The QDSC spectral response was improved by 35.7% over the 900 nm- 1200 nm wavelength range, leading to enhancements in both Jsc and Voc and an overall efficiency enhancement of 7.6 % compared to the reference QD solar cell

    Spin phenomena in semiconductor quantum dots

    Get PDF
    This thesis discusses development of new semiconductor quantum dot (QD) devices and materials. Optical spectroscopy of single QDs is employed in order to investigate electronic structure and magnetic properties of these materials. First we realise self-assembled InP/GaInP QDs embedded in Schottky diode structures, with the aim to realise charge control in these nanostructures, which recently provided an important test-bed for spin phenomena on the nano-scale. By varying the bias applied to the diode, we achieve accurate control of charge states in individual QDs, and also characterise the electron-hole alignment and the lateral extent of the exciton wavefunction. Second part of the thesis explores optimum regimes for optically induced dynamic nuclear polarization (DNP) in neutral InGaAs/GaAs QDs. Very efficient DNP under ultra low optical excitation is demonstrated, and its mechanism is explained as the electron-nuclear flip-flop occurring in the second order process of the dark exciton recombination. The final part of the thesis reports on magneto-optical studies of novel individual InPAs/GaInP quantum dots studied in this work for the first time. Here the long-term aim is to realise strong carrier confinement potentially suitable for QD operation at elevated temperatures, e.g. as a single photon emitter. Here we lay foundations for future structural studies of these dots using optically detected nuclear magnetic resonance, and explore regimes for ecient DNP in InPAs dots emitting in a wide range of wavelength 690-920 nm

    State-of-the-art InAs/GaAs quantum dot material for optical telecommunication

    Get PDF
    This thesis reports on the characterization of the state-of-the-art In(Ga)As/GaAs quantum dot (QD) material grown by molecular beam epitaxy for optical telecommunication applications. A wide variety of characterization methods are employed to investigate the material properties and characteristics of a number of QD-based devices enabling future device optimization. The motivation that prompted this study was predicated mainly upon two technological advantages. First, that the QDs gain spectra exhibits a symmetric gain shape and thus the change of refractive index with respect to gain is negligible at the lasing wavelength. This is therefore expected to result in a zero or a very small linewidth enhancement factor (LEF), which is desirable for instance, for high-speed modulation purposes where frequency chirp under modulation, which is directly proportional to the LEF, may be substantially reduced. Second, the fact that not only QDs exhibit a damped frequency response attributed to the carrier relaxation dynamics but also as the resilience of a laser to optical feedback is inversely proportional to the fourth power of the LEF, QD lasers are expected to demonstrate a relatively higher feedback insensitivity. This bodes well for operating these devices isolator free, which would be greatly cost-effective. The absorption and gain spectra of the QD active material are investigated in chapters 2 and 3, respectively. The LEF of QD lasers at a range of temperatures is studied in chapter 3, which confirms the expectation for the first time for In(Ga)As/GaAs QD lasers from -10 oC to 85 oC. Subsequently, the findings of chapters 2 and 3 are employed in chapter 4 with an electro absorption modulator device in mind which would be able to operate with chirp control. In chapter 5, the modulation response of QD lasers is investigated through examining the relative intensity noise (RIN) spectra in the electrical domain. The resilience of the devices to optical feedback is subsequently studied through the RIN characteristics at a range of temperatures. Chapter 6 provides a summary of the thesis findings and possible future works that may be carried out as continuation to this project, which fell outside of the remit of this work

    Engineered quantum dots for infrared photodetectors

    Get PDF
    Quantum Dot Infrared Photodetector (QDIP) Focal Plane Arrays (FPAs) have been proposed as an alternative technology for the 3rd generation FPAs. QDIPs are emerging as a competitive technology for infrared detection and imaging especially in the midwave infrared (MWIR) and longwave infrared (LWIR) regime. These detectors are based on intersubband transitions in self-assembled InAs quantum dots (QDs) and offer several advantages such as normal incidence detection, low dark currents and high operating temperatures, while enjoying all the benefits of a mature GaAs fabrication technology. However, due to Stranski-Krastanov (SK) growth mode and the subsequent capping growth, the conventional SK QDs are pancake shaped\u27 with small height to base ratio due to interface diffusion. Thus they cannot fully exploit the 3D \u27artificial atom\u27 properties. This dissertation work investigates two approaches for shape engineered QDs: (1) Selective capping techniques of Stranski-Krastanov QDs, and (2) Growth of Sub-Monolayer (SML) QDs. Using Molecular Beam Epitaxy (MBE) growth, engineered QDs have been demonstrated with improved dot geometry and 3D quantum confinement to more closely resemble the 3D \u27artificial atom\u27. In SK-QDs, the results have demonstrated an increased dot height to base aspect ratio of 0.67 compared with 0.23 for conventional SK-QD using Transmission Electron Microscope (TEM) images, enhanced s-to-p polarized spectral response ratio of 37% compared with 10% for conventional SK-QD, and improved SK-QDIP characterization such as: high operating temperature of 150K under background-limited infrared photodetection (BLIP) condition, photodetectivity of 1x109 cmHz1/2/W at 77K for a peak wavelength of 4.8 μm, and photoconductive gain of 100 (Vb=12V) at 77 K. In SML-QDs, we have demonstrated dots with a small base width of 4~6 nm, height of 8 nm, absence of wetting layer and advantage optical property than the SK-QDs. SML-QD shows adjustable dot height to base aspect ratio of 8nm/6nm, increased s-to-p polarized spectral response ratio of 33%, and a narrower full width at half maximum (FWHM), long wavelength 10.5 μm bound-to-bound intersubband transition, and higher responsivity of 1.2 A/W at -2.2 V at 77K and detectivity of 4x109 cmHz1/2/W at 0.4 V 77K.\u2

    Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots

    Full text link
    We adopt an atomistic pseudopotential description of the electronic structure of self-assembled, lens shaped InAs quantum dots within the ``linear combination of bulk bands'' method. We present a detailed comparison with experiment, including quantites such as the single particle electron and hole energy level spacings, the excitonic band gap, the electron-electron, hole-hole and electron hole Coulomb energies and the optical polarization anisotropy. We find a generally good agreement, which is improved even further for a dot composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review

    The Role of Quantum Dot Size on the Performance of Intermediate Band Solar Cells

    Get PDF
    The goal of this thesis is to understand possible mechanisms for the reported decrease of the open circuit voltage and solar cell efficiency in quantum dot (QD) intermediate band solar cells (IBSCs). More specifically, the effect of indium arsenide (InAs) QD height on the open circuit voltage and solar cell efficiency was studied in a systematic way. To explore this effect in QD solar cells, several solar cells (SCs) were grown with varying InAs QD heights. All experimental characteristics of the QD solar cells were compared to a reference structure without QDs. All samples were grown by Molecular Beam Epitaxy (MBE), and self-assembled InAs QDs were formed using the Stranski-Krastanov (SK) growth method. Using a QD truncation technique, the height of the QDs was accurately varied between 2 nm and 5 nm, while maintaining both lateral size and areal density of the QDs. The intermediate band (IB) of each solar cell was constructed from 10 layers of InAs QDs of the same size and density. All samples were fabricated as solar cell devices using standard optical photolithography, for electrical characterization and solar cell efficiency studies. Optical and structural characterization was done for all samples. The following characterizations were performed: Transmission Electron Microscopy (TEM), Low Temperature Photoluminescence (PL), Power Dependent PL, External Quantum Efficiency (EQE), Temperature Dependent Solar Power Conversion Efficiency, and Current-Voltage measurements. The efficiency measurements demonstrate the critical role of QD size on the performance of QD IBSCs. The EQE measurement indicates a change in the position of the band edge, due to carrier confinement, consistent with a QD size variation as verified by TEM and PL. Measurements demonstrate that the EQE in the NIR range of the spectrum is enhanced in the QD IBSCs devices due to light absorption by the QDs. This work also demonstrates that open circuit voltage (Voc) decreases with an increase of the QD height, which leads to significant degradation of the solar cell conversion efficiency for QD sizes above 3 nm. In addition, for samples with QD heights of 4 nm and above, the EQE spectra in the GaAs region decreases, indicating a loss of photocurrent, most likely due to traps introduced by the large QDs. These experimental results suggest that the open circuit voltage in QD IBSCs degrades with the increase of QD height as a result of (i) a decrease of the effective band gap of the absorber media and (ii) enhanced Shockley-Read-Hall recombination in the presence of traps in the solar cell space charge region

    Development of High Efficiency III/V Photovoltaic Devices

    Get PDF
    Developments of photovoltaic (PV) devices are driven by increasing needs for economically competitive renewable energy conversion. To improve the efficiency of PV devices for outdoor applications, the concept of intermediate band solar cell (IBSC) has been proposed to boost the conversation efficiency to 63% under concentrated suns illumination, which requires two-step photon absorption (TSPA) dominates among other competing processes: carrier thermal escape, tunneling and recombination. To optimize the design of III-V QD-IBSCs, first, the effect of electric field on band structure and carrier dynamics and device performances were quantitative investigated via simulation and experiments. Second, to experimentally increase TSPA at room temperature, novel QD systems related QD-IBSCs were designed, fabricated and characterized. The InAs/Al0.3GaAs QD-IBSC shows high TSPA working temperature towards 110K, promising for a room temperature IBSC under concentrated sunlight. Alternative QD systems including GaSb/GaAs and type II InP/InGaP were also investigated via band structure simulations. Meanwhile, developments of PV devices under indoor low intensity light (0.1 µW/cm2-1 mW/cm2) illumination not only enable long lifetime radio-isotope based batteries, but also, more important for the daily life, have the potential to promote an emerging market of internet of things by efficiently powering wireless sensors. Single junction InGaP PV devices were optimized for low intensity light sources using via simulations and statistical control. To reduce the dark current and increase the absorption at longer wavelengths (\u3e550 nm), several parameters including doping and thickness were evaluated. The experimental results on the devices show higher conversion efficiencies than other commercial PVs under varied indoor light sources: 29% under 1µW/cm2 phosphor spectrum and over 30% efficiency under LEDs illumination. In addition, the work includes developments of InAs nanowires epi-growth for PV applications. Several marks for selective area growth were successfully made
    • …
    corecore