2,290 research outputs found

    Nonlinear Hebbian learning as a unifying principle in receptive field formation

    Get PDF
    The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely Nonlinear Hebbian Learning. When Nonlinear Hebbian Learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities

    Comparison between Oja's and BCM neural networks models in finding useful projections in high-dimensional spaces

    Get PDF
    This thesis presents the concept of a neural network starting from its corresponding biological model, paying particular attention to the learning algorithms proposed by Oja and Bienenstock Cooper & Munro. A brief introduction to Data Analysis is then performed, with particular reference to the Principal Components Analysis and Singular Value Decomposition. The two previously introduced algorithms are then dealt with more thoroughly, going to study in particular their connections with data analysis. Finally, it is proposed to use the Singular Value Decomposition as a method for obtaining stationary points in the BCM algorithm, in the case of linearly dependent inputs

    Generating functionals for computational intelligence: the Fisher information as an objective function for self-limiting Hebbian learning rules

    Get PDF
    Generating functionals may guide the evolution of a dynamical system and constitute a possible route for handling the complexity of neural networks as relevant for computational intelligence. We propose and explore a new objective function, which allows to obtain plasticity rules for the afferent synaptic weights. The adaption rules are Hebbian, self-limiting, and result from the minimization of the Fisher information with respect to the synaptic flux. We perform a series of simulations examining the behavior of the new learning rules in various circumstances. The vector of synaptic weights aligns with the principal direction of input activities, whenever one is present. A linear discrimination is performed when there are two or more principal directions; directions having bimodal firing-rate distributions, being characterized by a negative excess kurtosis, are preferred. We find robust performance and full homeostatic adaption of the synaptic weights results as a by-product of the synaptic flux minimization. This self-limiting behavior allows for stable online learning for arbitrary durations. The neuron acquires new information when the statistics of input activities is changed at a certain point of the simulation, showing however, a distinct resilience to unlearn previously acquired knowledge. Learning is fast when starting with randomly drawn synaptic weights and substantially slower when the synaptic weights are already fully adapted

    An Adaptive Locally Connected Neuron Model: Focusing Neuron

    Full text link
    This paper presents a new artificial neuron model capable of learning its receptive field in the topological domain of inputs. The model provides adaptive and differentiable local connectivity (plasticity) applicable to any domain. It requires no other tool than the backpropagation algorithm to learn its parameters which control the receptive field locations and apertures. This research explores whether this ability makes the neuron focus on informative inputs and yields any advantage over fully connected neurons. The experiments include tests of focusing neuron networks of one or two hidden layers on synthetic and well-known image recognition data sets. The results demonstrated that the focusing neurons can move their receptive fields towards more informative inputs. In the simple two-hidden layer networks, the focusing layers outperformed the dense layers in the classification of the 2D spatial data sets. Moreover, the focusing networks performed better than the dense networks even when 70%\% of the weights were pruned. The tests on convolutional networks revealed that using focusing layers instead of dense layers for the classification of convolutional features may work better in some data sets.Comment: 45 pages, a national patent filed, submitted to Turkish Patent Office, No: -2017/17601, Date: 09.11.201

    Stochastic trapping in a solvable model of on-line independent component analysis

    Full text link
    Previous analytical studies of on-line Independent Component Analysis (ICA) learning rules have focussed on asymptotic stability and efficiency. In practice the transient stages of learning will often be more significant in determining the success of an algorithm. This is demonstrated here with an analysis of a Hebbian ICA algorithm which can find a small number of non-Gaussian components given data composed of a linear mixture of independent source signals. An idealised data model is considered in which the sources comprise a number of non-Gaussian and Gaussian sources and a solution to the dynamics is obtained in the limit where the number of Gaussian sources is infinite. Previous stability results are confirmed by expanding around optimal fixed points, where a closed form solution to the learning dynamics is obtained. However, stochastic effects are shown to stabilise otherwise unstable sub-optimal fixed points. Conditions required to destabilise one such fixed point are obtained for the case of a single non-Gaussian component, indicating that the initial learning rate \eta required to successfully escape is very low (\eta = O(N^{-2}) where N is the data dimension) resulting in very slow learning typically requiring O(N^3) iterations. Simulations confirm that this picture holds for a finite system.Comment: 17 pages, 3 figures. To appear in Neural Computatio

    Quantum Hopfield neural network

    Full text link
    Quantum computing allows for the potential of significant advancements in both the speed and the capacity of widely used machine learning techniques. Here we employ quantum algorithms for the Hopfield network, which can be used for pattern recognition, reconstruction, and optimization as a realization of a content-addressable memory system. We show that an exponentially large network can be stored in a polynomial number of quantum bits by encoding the network into the amplitudes of quantum states. By introducing a classical technique for operating the Hopfield network, we can leverage quantum algorithms to obtain a quantum computational complexity that is logarithmic in the dimension of the data. We also present an application of our method as a genetic sequence recognizer.Comment: 13 pages, 3 figures, final versio
    corecore